Sensitivity of ATLAS to alternative mechanisms of elektroweak symmetry breaking in vector boson scattering qq → qqlvlv [Elektronische Ressource] / von Jan W. Schumann. [Universität Bonn, Physikalisches Institut]
139 pages
English

Sensitivity of ATLAS to alternative mechanisms of elektroweak symmetry breaking in vector boson scattering qq → qqlvlv [Elektronische Ressource] / von Jan W. Schumann. [Universität Bonn, Physikalisches Institut]

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
139 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

..UNIVERSITAT BONNPhysikalisches InstitutSensitivity of ATLAS to Alternative Mechanismsof Electroweak Symmetry Breaking in VectorBoson Scattering qq!qq‘ ‘ vonJan W. SchumacherAbstract An analysis of the expected sensitivity of the ATLAS experiment at theLarge Hadron Collider at CERN to alternative mechanisms of electroweak symmetrybreaking in the dileptonic vector boson scattering channel is presented. With thegeneralized K-Matrix model of vector boson scattering recently implemented in theevent generatorWhizard, several additional resonances are investigated. Whizardis validated for ATLAS use and an interface for the Les Houches event format isadapted for theA softwareAthena. Systematic model and statistical MonteCarlo uncertainties are reduced with a signal de nition using events reweighted in thecouplingsg of the new resonances. Angular correlations conserved by Whizard areused in the event selection. A multivariate analyzer is trained to take into accountcorrelations between the selection variables and thereby to improve the sensitivitycompared to cut analyses. The statistical analysis is implemented with a pro lelikelihood method taking into account systematic uncertainties and statistical uncer-tainties from Monte Carlo. Ensemble tests are performed to assure the applicability ofthe method. Expected discovery signi cances and coupling limits for new additionalresonances in vector boson scattering are determined.

Sujets

Informations

Publié par
Publié le 01 janvier 2010
Nombre de lectures 5
Langue English
Poids de l'ouvrage 3 Mo

Extrait

..
UNIVERSITAT BONN
Physikalisches Institut
Sensitivity of ATLAS to Alternative Mechanisms
of Electroweak Symmetry Breaking in Vector
Boson Scattering qq!qq‘ ‘
von
Jan W. Schumacher
Abstract An analysis of the expected sensitivity of the ATLAS experiment at the
Large Hadron Collider at CERN to alternative mechanisms of electroweak symmetry
breaking in the dileptonic vector boson scattering channel is presented. With the
generalized K-Matrix model of vector boson scattering recently implemented in the
event generatorWhizard, several additional resonances are investigated. Whizard
is validated for ATLAS use and an interface for the Les Houches event format is
adapted for theA softwareAthena. Systematic model and statistical Monte
Carlo uncertainties are reduced with a signal de nition using events reweighted in the
couplingsg of the new resonances. Angular correlations conserved by Whizard are
used in the event selection. A multivariate analyzer is trained to take into account
correlations between the selection variables and thereby to improve the sensitivity
compared to cut analyses. The statistical analysis is implemented with a pro le
likelihood method taking into account systematic uncertainties and statistical uncer-
tainties from Monte Carlo. Ensemble tests are performed to assure the applicability of
the method. Expected discovery signi cances and coupling limits for new additional
resonances in vector boson scattering are determined.
Post address: BONN-IR-2010-013
Nussallee 12 Bonn University
53115 Bonn October 2010
Germany ISSN-0172-8741Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakult at
der Rheinischen Friedrich-Wilhelms-Universit at Bonn
1. Gutachter: Prof. Dr. Michael Kobel
2.hter: Prof. Dr. Norbert Wermes
Tag der Promotion: 27.09.2010
Erscheinungsjahr: 2010
Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn unter
http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert.Contents
1 Introduction 1
1.1 Why Look Beyond the Standard Model . . . . . . . . . . . . . . . . . 1
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Theoretical Basis 5
2.1 The Case for an E ective Theory . . . . . . . . . . . . . . . . . . . . 5
2.2 Electroweak Chiral Lagrangian . . . . . . . . . . . . . . . . . . . . . 6
2.3 Resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 K-Matrix Unitarization . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Signal Characteristics at the LHC . . . . . . . . . . . . . . . . . . . . 12
3 Experiment 15
3.1 Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 A Toroidal LHC Apparatus . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Inner Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Calorimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.4 Muon Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.5 Luminosity Measurement System . . . . . . . . . . . . . . . . 23
3.2.6 Trigger System . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Object Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Hadronic Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.3 Muons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.4 Missing Transverse Energy . . . . . . . . . . . . . . . . . . . . 26
3.3.5 Flavor Tagging . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4 Monte Carlo Generators 29
4.1 Whizard and Pythia . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.1 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Quark Flavor Scaling . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.3 Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
‘ ‘ 4.2.4 m Distributions for Example Resonances . . . . . . . . . . 36
4.2.5 Null Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . 37
iContents
5 Monte Carlo Simulation 41
5.1 Signal and Irreducible Background Samples . . . . . . . . . . . . . . 41
5.1.1 Whizard K-Matrix Resonant qq!qq‘ ‘ . . . . . . . . . . 41
5.1.2 Standard Model qq!qq‘ ‘ . . . . . . . . . . . . 43
5.2 Reducible Background Samples . . . . . . . . . . . . . . . . . . . . . 44
5.2.1 Top Pair Production tt . . . . . . . . . . . . . . . . . . . . . . 45
5.2.2 Single Top Production Wt . . . . . . . . . . . . . . . . . . . . 48
5.2.3 W + jets and Z + jets Production . . . . . . . . . . . . . . . . 49
5.2.4 Pileup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Event Reweighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 Signal De nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4.1 Conventional s +b . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4.2 Recovering s +b at Histogram Level . . . . . . . . . . . . . . 56
6 Event Selection 61
6.1 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Object Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2.1 Overlap Removal . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2.2 Quality Cuts on Reconstructed Objects . . . . . . . . . . . . . 64
6.3 Event De nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.4 Fiducial Precuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.5 Multivariate Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.5.2 Boosted Decision Tree . . . . . . . . . . . . . . . . . . . . . . 69
6.5.3 Input Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.5.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
‘‘6.5.5 Lepton Azimuthal Angle Separation ’ . . . . . . . . . . . 79
7 Sensitivity and Limits 83
7.1 Statistical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.1.1 Hypothesis Test Setup . . . . . . . . . . . . . . . . . . . . . . 83
7.1.2 Likelihood Function . . . . . . . . . . . . . . . . . . . . . . . . 84
7.1.3 Con dence Interval Construction . . . . . . . . . . . . . . . . 86
7.1.4 Ensemble Test of Test Statistic Distribution . . . . . . . . . . 87
7.2 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2.2 Experimental Uncertainties . . . . . . . . . . . . . . . . . . . 98
7.2.3 Theoreticalties . . . . . . . . . . . . . . . . . . . . . 102
7.2.4 Results For Relative Uncertainties . . . . . . . . . . . . . . . . 103
7.2.5 for Absoluteties . . . . . . . . . . . . . . . . 103
7.3 Optimization of Boosted Decision Tree Cut . . . . . . . . . . . . . . . 109
7.3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
iiContents
7.3.2 Monte Carlo Equivalent Luminosity . . . . . . . . . . . . . . . 109
7.3.3 Generalization to Multiple Resonances . . . . . . . . . . . . . 111
7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8 Conclusions and Outlook 121
Bibliography 123
iiiiv1 Introduction
1.1 Why Look Beyond the Standard Model
The Standard Model of particle physics (SM) [1, 2, 3] has enjoyed huge success in
explaining fundamental interactions. Its very name bears witness to that
fact.
However, there are still open questions that are not answered within that frame-
work. Some are directly based on experimental observation, e.g.:
How do particles acquire their masses?
Is cosmological dark matter made up of as of yet undiscovered particles?
Others pertain to the systematics of the theory, e.g.:
Is there a way to do with fewer free parameters?
Are the fundamental forces uni ed at some energy scale?
How does gravity t into quantum theory?
How elementary particles acquire their masses is perhaps one of the most important
open questions. Without an answer to this, the current SM is inconsistent. The
agship idea how to explain this, is the Higgs mechanism [4]. It breaks electroweak
symmetry spontaneously by introducing a new scalar eld with a continuum of lowest
states. Phenomenologically, the excitations of this eld introduce a new particle, the
Higgs boson. On the experimental discovery of this particle hinges a large part of
our current world view of particle physics. Finally nding this particle which has
not been seen despite great e ort in any previous experiment to date [5] was in
important reason to build theLarge Hadron Collider (LHC). The Higgs boson
has become so enshrined in modern particle physics thinking, that it is commonly
termed the Standard Model Higgs boson, despite its as of yet elusive nature.
Even not nding the Higgs boson at the LHC would still be a huge boon to
particle physics. Not nding would mean exclusion. Exclusion would mean that the
electroweak symmetry bre

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents