Stratifolds And Equivariant Cohomology Theories [Elektronische Ressource] / Haggai Tene. Mathematisch-Naturwissenschaftliche Fakultät
93 pages

Stratifolds And Equivariant Cohomology Theories [Elektronische Ressource] / Haggai Tene. Mathematisch-Naturwissenschaftliche Fakultät

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
93 pages
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

orStratifoldsRheiniscAndeneEquivh-Wilhelms-UnivarianvtBonn,CohomologyFTheoriesBonnDissertationezurHaggaiErlangungJerusalem,des2010Doktorgradeshen(Dr.riedricrer.ersit?tnat.)vdergelMathematiscgthon-NaturwissenscThaftlicaushenIsraelFAugustakult?tdert:Angefertigtungsjmit(Bonn)GenehmigungkderriedricMathemaPromotion:tis2011c2.h-NaturwissenscDr.haftlicB?henagFErscakult?thderKrecRheinisc(Bonn)henReferenFProf.riedricCarl-Fh-Wilhelms-Univhersit?tdigheimerBonnT.der1.11.10.2010Referenheint:aProf.r:Dr.MatthiasvConCohomologyten61tsducChaptert1.66Indtrocupduction924ardsChapter612.theStratifolds77and7.2.P7.3.arametrizedHStratifoldsThe1148Chapter6.2.3.6.3.StratifoldkwHomologyateTheories7413Negativ3.1.nRepofortTabofoutjoinsstratifoldprohomologyApp13tation3.2.AppRepcategoryortLieabEquivouthomologylobaccallylogyniteBorelhomologyStratifold18homolo3.3.StratifoldLoandcallySomenite7.stratifoldducthomologyT22F3.4.teStratifoldAnotherendcuphomologyt25cohomologyChapterin4.heStratifoldbCohomologycyclesTheoriesKrec29and4.1.ductRep1ort,absignouttionsstratifold2cohomologymo29Bibliograph4.2.CompactStratifoldGroupscohomology6.1.withariancompactstratifoldsupp48ortStratifold35kw4.3.cohomoStratifold55endStratifoldcohomologycohomology376.4.Chapterbac5.ardsBacgykw6.5.ardsT(Co)HomologyhomologyandcohomologyEquiv6.6.ariancomputationstChapterPOnoincar?ProDualiniteyate38for5.1.iGroupi(co)homologyGroupswith7.1.codescriptionecienthetsproinucaincatehain77complexAn38terpretation5.2.

Sujets

Informations

Publié par
Publié le 01 janvier 2010
Nombre de lectures 16

Extrait

orStratifoldsRheiniscAndeneEquivh-Wilhelms-UnivarianvtBonn,CohomologyFTheoriesBonnDissertationezurHaggaiErlangungJerusalem,des2010Doktorgradeshen(Dr.riedricrer.ersit?tnat.)vdergelMathematiscgthon-NaturwissenscThaftlicaushenIsraelFAugustakult?tdert:Angefertigtungsjmit(Bonn)GenehmigungkderriedricMathemaPromotion:tis2011c2.h-NaturwissenscDr.haftlicB?henagFErscakult?thderKrecRheinisc(Bonn)henReferenFProf.riedricCarl-Fh-Wilhelms-Univhersit?tdigheimerBonnT.der1.11.10.2010Referenheint:aProf.r:Dr.MatthiasvConCohomologyten61tsducChaptert1.66Indtrocupduction924ardsChapter612.theStratifolds77and7.2.P7.3.arametrizedHStratifoldsThe1148Chapter6.2.3.6.3.StratifoldkwHomologyateTheories7413Negativ3.1.nRepofortTabofoutjoinsstratifoldprohomologyApp13tation3.2.AppRepcategoryortLieabEquivouthomologylobaccallylogyniteBorelhomologyStratifold18homolo3.3.StratifoldLoandcallySomenite7.stratifoldducthomologyT22F3.4.teStratifoldAnotherendcuphomologyt25cohomologyChapterin4.heStratifoldbCohomologycyclesTheoriesKrec29and4.1.ductRep1ort,absignouttionsstratifold2cohomologymo29Bibliograph4.2.CompactStratifoldGroupscohomology6.1.withariancompactstratifoldsupp48ortStratifold35kw4.3.cohomoStratifold55endStratifoldcohomologycohomology376.4.Chapterbac5.ardsBacgykw6.5.ardsT(Co)HomologyhomologyandcohomologyEquiv6.6.ariancomputationstChapterPOnoincar?ProDualiniteyate38for5.1.iGroupi(co)homologyGroupswith7.1.codescriptionecienthetsproinucaincatehain77complexAn38terpretation5.2.tBacprokwtardsy(co)homologyof43805.3.ComparingEquivk'sarianducttthePprooincar?81dualitendixy-45omologyChapterorien6and.conEquivenarian83tendixStratifold-HomologystableandduleCohomolo89gyyTheories3forG
G
G
G
pretationductionomEquivolariannewta(co)homologyThegroupsareaconstrryequestion.anforimpnegativortanquestiontoftonewolgroupsforesstudyingconstructIn--spaces.heTheseThis(co)homologyseegroupsofarepdenedyviaCantheenBoreleconstruction.theFtheorvdiscreteogrouptotheysecondcanbalsodualitb-ewdened(co)homologyustioincar?ngnpro(co)homologyjectivtheehomologyresolutions.tOneincandegreealsondenesTnaturate(co)homology(co)homologytogroupsconstruction?fornew1to-spacesPinBorelaPsimilarmologywon.atheyW.bTheregroupsisLieaermapoffromdealtequivMaarispangeneraltiscohomologybto4Taddressateorcohomooflogyimp.andInissucyhoatsituationarianoneonenaturallythetroasksointarianwcohomologyopquestions:trivial-dimensionsCannon-trivialovnnoePsaar?yThsomethingfolloabvoutl:thdeneewhickoincar?ernelgroupsandthecoktheernelgroupsofgroupsthisanswmap?question,-theoryCandualoneofdenewhereasTtheoryatedualcohomologyhgroupsthefortspacesiswhennaturalCHAPTERateselfexp(withisdimensionnotalaeniteingroupthebuthaofcompactThisLiehegroup?tTTheooincar?bbothbquestionsGreenleesw,eariangivalloebanButanswswerabstractinthisthisthethesis.isThesansweeranothertoFtheordinaryrstoneques-ttionmostisortangivresultsentobsyPdeningdualita.thirdd(co)homologyestheoryocalholdledequivbactkwasardscan(co)homologyforandsimplestan-manifold:exactpsequencet.relatingequivalltthreeand(co)homologygroupstheories.aThisoinnewaretheoryiniseabutstraighgeneraltforwinardositigeneralizationeofgivingtheroconstructionforofoiequivcariandualitt.(co)homologyuandtheTwingateis(co)homoleryogyain-termsoneofnewresolutions.groupsOfhcourse,PthisdualonlythewgivorksviaforBorelnInicasetenitegroups.theKrec(co)homologykgivhasangiverenthisathegeometriccohomologybisordismoincar?descriptiontoofhomologysingularthehomolconstructionogythegroupshomologyandis-oincar?fortosmocoothomanifoldsof-BorelofucsingularicohomologyThisgraoeryupsincesTusingcohomologystratifolds.areThisdualcanthebectedeshift).usedetosgivgiveaaordismbter-ordismofdescriptionnewofwhicequivextendsarianactionstcompacthomolgroups.ogygivgroupstdenedanswviatotheheBorelquestion.construction.questionTPhidualitshasweenorksalreadyforeforecompactyLieandgroupsyandwhoisequivthetstartingectrapwingoinytyforprinciples.thethisanswnerertorathertheandsecondalthoughquestion.shouldBeforeewcaseeitcomenottothiG
3
G G
G
G X G CW
X EG XG
G H (X) H (X) G G
G ^ ^X H (X) H (X) G
^H X G CW XG
^ ^ ^H (X)!H ( ) H (X)XG G G
G X
^H (X)!H (X)G G
H (X)G
1^H (X)G
DH (X)G
G
DH G CWG
k k k k+1^(1) :::!DH (X)!H (X)!H (X)!DH (X)!:::G G G G
GDH (X)k
G G G G^:::!DH (X)!H (X)!H (X)!DH (X)!:::k+1 k k k
ontonTateateo(co)homologythatgroupstheofcohomolaTthec-manifoldmainisnin.tetryecohomologysthetithengb(andAdicult).toarianWtheetheusetourequivglogyeometriccandenitionsentothiscomputeesucehardsgroupsniforgycertaincomputationactionsexactoncomputations.the(co)homologyywhere-sphere,thejustquestion.equivtoisindicateandhoofwtrivialsucisomorphismhgroupscomputationsandcangroupsbifeisdone.equivThereoarethereothernaturalgoTheoisdhreasonssequencetoancomipgroupsutecallTeate(5.22)groupoupsquivariantasqwofeomplexeswillandindicateforlatercularinbthisbindeningtroalsoduction.theThegroupsTlikatecomputationcohomologydidgroupstheir(of1.anitegrouptwhi,complexnotpawithreasoner-space)induceshaavwseateaequivringinstruc-particular,turetgivvenactsb.ynaturalthetcupngproeduct..Asonderinaordinarytheorycohomologytothesequencecomputationfromofecwhicutheoryptheproiductsexact.cansucbariane,vhebrcohomolyariandicult.bacI.nvthewing:caseorofeawesmoanothoho-maorynifoldoftheatecupniteprothducteoftenlularisnaturcomputedquencgeometricallyinusingmighrepresenpartativhelpfulesmighgivgroupsenbbarianyationmanifoldsarorinstrat-eifolds.bKofreccompactklohasofconstructedaaallogeomedecidetWriagreecviousproODUCTIONduct(co)homologyonanegativdimensionaleTTcomplexateancohomologyisgroupssubandconsistingaskalledoifortsthenonrelationstabiliztothentheinclusioncupanprorduct.equivWthateshosho(co)homologywTthatarianthesetheprosimilarlyductshomologyagree,Inifandone(co)homologyisariananewnianishesttheefreelygroup.,TheseThereareathetransformationmain(co)homothemesarianandclassicalindicationsiofrelathevanswabersOneofwthiswhetherthesis.isWthirdeogynoandwtransformationssummationedrmiexactzeandthehard.resultsrinvmorehdetotnewasucil.thatLetcorrespisndbngeisaWdiscreteconstructgrouphThisequivholds.tatheoryywhdualitcthiswcomplex.denoteOneydenesogytheateequivtarianandtthe(co)homologykwofcohomologyifWashathee(co)homologyfolloofTheorem.theFBoreleveryconstructiontonlygrandvifcanishstructve,candmolodenotestheituibeyongroupscategoryTThedimensionalconstruction.eBorelcandandthequivariantofelgroupsmapsgyacohomoloalandseresp.e:IterestingfehomologytisthisnitetioneIncanforalsoedenetthethisTisateordism(co)homologyyofgroupstt,equivdenotedforbmotivysimilarianconstructionequivexistseenhomologywwetdenotebgroupsyyandthedualitonencar?LieoiandPsequenceofoksee:uractionsresp.generalizationAnofimpwingortanBesidestthisthetomanagepropnoterteyours.ofwithfailgroupsthewhethermeasureobgroups5isINTRthatifandX
GDH (X) DH (X)G
DH "D"
M
m G
k G k G k G^ ^H (M)!DH (M); DH (M)!H (M); H (M)!H (M):G m k G m k G m k 1
k kM DH (M)!H (M)G G
G k ^H (M)!H (M) H (M)m k G G
G H (M) H (M) G
^ ^H (M) H (M)G G
kDH (X)!G
k ^H (X) H (X) MG G
k k^G k>m H (M)!H (M)G G
k G 1^ ^k < 1 H (M)!H (M) H (M)G m k 1 G
GH (M) Gm
G
G^H (M) H (M) H (M)G G
G kH (M)!H (M)m k G
G SH (X) SH (X) G
X
GDSH (M)
G
d dDSH (M) SH (X) SH (X) XG G
G
G

dDSH (M) SH (M) SH (M)GG G
kk k k+1d(2) :::!DSH (M)!SH (M)!SH (M)!DSH (M)!:::G G G G
Liesdualifhandholdsonlydualitifinthecompact)actionforisgoryfree,oincar?inywhictructiohhacasetPateoincar?edualitweybyisquencordinaryhPkwoinc(co)homologyar?todualitPyreofiftheandquotienbact.andIfetwreason,eabwillybtheeandableisomorphismtowcomputeathetedkLieernelalsoandThistheofcokasernelTheofthethebmapisusandThoft.ooinothpwithaaction.asetextcestheWinhosenseepscanoincar?oneforasothw.egeneralwillFbLieequivariantablettoorientecomputeothyadualitisoincar?InPnaturfulllenotyesacupdshetoarbitraryextension.forIfedotheistheoryadoneclosedgeometricorienariantedhe(co)homologyrtmanifoldordismthencorrespfor(co)homologytcarianareequivabtheNotemapoincviouslyTheObwproblem.thenaturalwaeersumeanswaItgeneralture.tedlitera-smothetationinthisitcndeisardsanandisomorphismthisandeforeandnotocouldeentheymapPeanwwherebutasucwhennaturalcohomandexactsimplevothtobTheorem.iseveorompFouporienonstructconstructionohomoloThisies6cissmoanforisomorphism.quivariantThedenotegroupoincar?ODUCTIONgeneINTRan1.Thistationypreserving.folloTheorem.and(5.40)exactisassmapphatedesisomorphicallyualtotogethertheonstorsionothpartsmoofthe(Poincforarcompact?groupsdualiwhictwy)can.deneWhenbacLardshas.pisebraiconstructionoequivdictcohomologyt(fororiesexampleceifatherebisgroups.antheoriesorienondingtationthepreservingoffreeBoreletonsactionnondenotedaysphere)outthenthatcomputingzero.bandear?atheories.closegroupsdresp.orientehediniscaseeasiercohomologythenecomputingvsmotothassman-thatifoldisofsmodimension(inandnonwithorienanmanifoldactionaofothaoriennitepreservingandInthisgeomemighritconhelpwindenecomputingkwthetheorimonlyapifgrlloupgap.oneandcanha.vWcethehavTegrtheuwnotationfolwlowingbisomorphisms:dualit.andThethat.BorelobstructioncisonsthattructiagainoniscansmobmanifoldewappliedconsideralsoologytoThecompactsequencesLieogroupseandizesocompactonegroups:has(6.51)equivorarianronderc(co)homologyacttheoriesgrgeneralizingstandstheccaseeofcnitegygroups.orTheonconstructionheofatetheofbacothkwdards-manifoldstheorieseforsmonitemaps,groupsdisPbasedl,onrhomologicalinalgebra.,Thisnotdomapes.notandgeneralize.immediatelythetowingcoempactaLiealgroups.seIne:thisumsituationtwmapevlogivokitatdaniPawithnewallconstructiontionsoforietheoriesnisomorphicsmotomanifoltheare(co)homologyothofmaptheandBorelconstructiontG CW
GG G Gd:::!SH (X)!DSH (X)!SH (X)!SH (X)!:::k k k k 1
G
G
G
G G dSH SH DSH DSH SH (X)G G
k kDSH (M)! DH (M)G G
k
k k kd ^SH (M)! H (M) SH (M)! H (M)GG G G
k k+1k k dDSH (M) ! SH (M) ! SH (M) ! DSH (M)G G G G
# # #

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents