Structural and functional analysis of ATP dependent conformational changes in the bacterial Mre11:Rad50 catalytic head complex [Elektronische Ressource] / Carolin Möckel. Betreuer: Karl-Peter Hopfner
125 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Structural and functional analysis of ATP dependent conformational changes in the bacterial Mre11:Rad50 catalytic head complex [Elektronische Ressource] / Carolin Möckel. Betreuer: Karl-Peter Hopfner

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
125 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München Structural and functional analysis of ATP dependent conformational changes in the bacterial Mre11:Rad50 catalytic head complex Carolin Möckel aus München 2011 Erklärung Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 (in der Fassung der sechsten Änderungssatzung vom 16. August 2010) von Herrn Prof. Dr. Karl-Peter Hopfner betreut. Ehrenwörtliche Versicherung Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet. München, den 19. Dezember 2011 ..................................................... Carolin Möckel Dissertation eingereicht am 14. Oktober 2011 1. Gutachter: Prof. Dr. Karl-Peter Hopfner 2. Gutachter: Prof. Dr. Patrick Cramer Mündliche Prüfung am 12. Dezember 2011 This thesis has been prepared from November 2007 to October 2011 in the laboratory of Prof. Dr. Karl-Peter Hopfner at the Gene Center of the Ludwig-Maximilians-University of Munich (LMU).

Informations

Publié par
Publié le 01 janvier 2011
Nombre de lectures 18
Langue English
Poids de l'ouvrage 13 Mo

Extrait


Dissertation zur Erlangung des Doktorgrades
der Fakultät für Chemie und Pharmazie
der Ludwig-Maximilians-Universität München







Structural and functional analysis of ATP dependent
conformational changes in the bacterial
Mre11:Rad50 catalytic head complex




Carolin Möckel
aus
München



2011

Erklärung

Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom
29. Januar 1998 (in der Fassung der sechsten Änderungssatzung vom 16. August 2010)
von Herrn Prof. Dr. Karl-Peter Hopfner betreut.



Ehrenwörtliche Versicherung

Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet.


München, den 19. Dezember 2011



.....................................................
Carolin Möckel







Dissertation eingereicht am 14. Oktober 2011
1. Gutachter: Prof. Dr. Karl-Peter Hopfner
2. Gutachter: Prof. Dr. Patrick Cramer
Mündliche Prüfung am 12. Dezember 2011


This thesis has been prepared from November 2007 to October 2011 in the laboratory of
Prof. Dr. Karl-Peter Hopfner at the Gene Center of the Ludwig-Maximilians-University of
Munich (LMU).



Publications

During the work of this thesis, the following publications have been published or are in the
process of being published:

* * *Lammens K. , Bemeleit D. J. , Möckel C. , Clausing E., Schele A., Hartung S., Schiller C.
B., Lucas M., Angermüller C., Söding J., Strässer K., and Hopfner K.-P. (2011). The
Mre11:Rad50 Structure Shows an ATP-Dependent Molecular Clamp in DNA Double-
Strand Break Repair. Cell 145(1): 54-66.

* These authors contributed equally to this work

Möckel C., Lammens K., Schele A., and Hopfner K.-P. (2011). ATP driven structural
changes of the bacterial Mre11:Rad50 catalytic head complex. Nucleic Acids Res. 2011
Sep 21. [Epub ahead of print]

Schiller C.B., Lammens K., Guerini I., Coordes B., Schlauderer F., Möckel C., Schele A.,
Sträßer K., Jackson S. P. and Hopfner K.-P. (2011). Insights into DNA double-strand
break signaling and ataxia-telangiectasia like disease from the structure of an Mre11-
Nbs1 complex. Manuscript submitted.
Table of Contents i

Table of Contents
1.  Summary .................................................................................................................................... 1 
2.  Introduction ................................................................................................................................ 2 
2.1.  DNA – history of the keystone of life ................................................................................ 2 
2.2.  DNA damage ...................................................................................................................... 2 
2.2.1.  DNA double strand breaks (DSBs) ............................................................................ 4 
2.3.  DSB repair ...... 6 
2.3.1.  Homologous recombination and single strand annealing ........................................... 8 
2.3.2.  Classical and alternative non-homologous end-joining 10 
2.4.  The Mre11:Rad50:Nbs1 (MRN) complex – a key player in DSB repair ......................... 11 
2.4.1.  Structural organization of the MR(N) complex........................................................ 12 
2.4.2.  Functional insights into thmplex ........................................................... 15 
2.4.3.  Multiple roles of MRN in eukaryotes ....................................................................... 17 
2.4.4.  Role of MR in prokaryotes ....................................................................................... 21 
2.4.5.  The bacterial MR catalytic head complex ................................................................ 22 
2.4.6.  Working model of MR´s DNA binding mechanism ................................................ 24 
2.5.  Objectives ......................................................................................................................... 26 
3.  Materials and Methods ............................................................................................................. 27 
3.1.  Materials ........................................................................................................................... 27 
3.1.1.  Oligonucleotides ....................................................................................................... 27 
3.1.2.  Plasmids ................................................................................................................... 29 
3.1.3.  Strains ....................................................................................................................... 31 
3.1.4.  Media and antibiotics ............................................................................................... 31 
3.1.5.  Preparation of sodium orthovanadate solution ......................................................... 31 
3.2.  Molecular biology methods .............................................................................................. 32 
3.2.1.  Molecular cloning .................................................................................................... 32 
3.2.2.  Site directed mutagenesis ......................................................................................... 33 
3.2.3.  Transformation of E. coli ......................................................................................... 34 
Table of Contents ii

3.3.  Protein biochemistry methods .......................................................................................... 34 
3.3.1.  Protein expression in E. coli ..................................................................................... 34 
3.3.2.  Purification of recombinant proteins ........................................................................ 34 
3.3.3.  Denaturing polyacrylamide gel electrophoresis (SDS-PAGE) ................................ 37 
HLH NBD3.3.4.  Dimerization of TmMre11 :Rad50 .................................................................. 37 
3.3.5.  Analytical size exclusion chromatography ............................................................... 37 
3.3.6.  Crosslinking via Bis-Maleimidoethane (BMOE) ..................................................... 38 
3.3.7.  Disulfide bridging via copper sulfate (CuSO ) ........................................................ 38 4
3.4.  Structural biology methods .............................................................................................. 39 
3.4.1.  Crystallization .......................................................................................................... 39 
3.4.2.  Data collection .......................................................................................................... 41 
3.4.3.  Structure determination, model building and refinement ......................................... 41 
3.4.4.  Small angle x-ray scattering ..................................................................................... 43 
3.5.  In vitro activity assays of Mre11:Rad50 .......................................................................... 43 
3.5.1.  ATP hydrolysis assay ............................................................................................... 43 
3.5.2.  Electrophoretic mobility shift assay (EMSA) .......................................................... 44 
3.5.3.  Nuclease activity assay ............................................................................................. 45 
3.5.4.  Endonuclease activity assay ..................................................................................... 45 
3.5.5.  Protein-DNA encircling assay .................................................................................. 46 
3.5.6.  Antibody DNA binding assay 46 
3.6.  Bioinformatic methods ..................................................................................................... 47 
3.6.1.  Structure based sequence alignment ......................................................................... 47 
4.  Results ........................................................

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents