The effect of lethal toxin on the respiratory epithelium [Elektronische Ressource] / Mandy Lehmann
125 pages
Deutsch

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

The effect of lethal toxin on the respiratory epithelium [Elektronische Ressource] / Mandy Lehmann

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
125 pages
Deutsch
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München The Effect of Lethal Toxin on the Respiratory Epithelium Mandy Lehmann aus Frankfurt/Oder 2008 Erklärung Diese Dissertation wurde im Sinne von § 13 Abs. 4 der Promotionsordnung vom 29. Januar 1998 von Frau Dr. U. G. Knaus betreut und von Frau Prof. Dr. A. M. Vollmar vor der Fakultät für Chemie und Pharmazie vertreten. Ehrenwörtliche Versicherung Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet. San Diego, am 02.03.2008 Mandy Lehmann Dissertation eingereicht am: 08.03.2008 1. Gutachter: Frau Prof. Dr. U. G. Knaus 2. Gutachter: Frau Prof. Dr. A. M. Vollmar Mündliche Prüfung am: 17.04.2008 Dedicated to my mom CONTENTS 1 CONTENTS 1 CONTENTS I 2 INTRODUCTION 4 2.1 BACILLUS ANTHRACIS INFECTION LEADS TO ANTHRAX 4 2.1.1 THE GENETICS BEHIND BACILLUS ANTHRACIS 5 2.1.2 ANTHRAX RECEPTORS TEM8 AND CMG2 10 2.1.3 ANTHRAX TOXIN CYCLE 11 2.

Sujets

Informations

Publié par
Publié le 01 janvier 2008
Nombre de lectures 24
Langue Deutsch
Poids de l'ouvrage 10 Mo

Extrait

Dissertation zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

der Fakultät für Chemie und Pharmazie
der Ludwig-Maximilians-Universität München








The Effect of Lethal Toxin on the
Respiratory Epithelium






Mandy Lehmann

aus

Frankfurt/Oder



2008





Erklärung

Diese Dissertation wurde im Sinne von § 13 Abs. 4 der Promotionsordnung vom 29.
Januar 1998 von Frau Dr. U. G. Knaus betreut und von Frau Prof. Dr. A. M. Vollmar
vor der Fakultät für Chemie und Pharmazie vertreten.






Ehrenwörtliche Versicherung

Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet.




San Diego, am 02.03.2008






Mandy Lehmann













Dissertation eingereicht am: 08.03.2008
1. Gutachter: Frau Prof. Dr. U. G. Knaus
2. Gutachter: Frau Prof. Dr. A. M. Vollmar
Mündliche Prüfung am: 17.04.2008

































































































Dedicated to my mom



























CONTENTS

1 CONTENTS
1 CONTENTS I
2 INTRODUCTION 4
2.1 BACILLUS ANTHRACIS INFECTION LEADS TO ANTHRAX 4
2.1.1 THE GENETICS BEHIND BACILLUS ANTHRACIS 5
2.1.2 ANTHRAX RECEPTORS TEM8 AND CMG2 10
2.1.3 ANTHRAX TOXIN CYCLE 11
2.2 BACTERIA AND TOXIN INTERACTION WITH THE EPITHELIUM 12
2.2.1 LETHAL TOXIN INFLUENCE ON JUNCTIONS AND ADHESION 13
2.2.2 GENERAL KNOWLEDGE ABOUT JADHESIONS
2.2.3 LETHAL TOXIN INFLUENCE ON THE CYTOSKELETON 14
2.2.4 GENERAL OVERVIEW OF THE CYTOSKELETON 15
2.3 LETHAL TOXIN INDUCED CELL DEATH IN MURINE CELLS 24
2.3.1 CYTOTOXICITY COMPARISON BETWEEN MOUSE AND HUMAN 26
2.3.2 CLINICAL SYMPTOMS AND TREATMENT OF INHALATIONAL ANTHRAX 27
3 AIM OF THE WORK 28
4 MATERIAL AND METHODS 29
4.1 CHEMICALS AND REAGENTS 29
4.1.1 KITS 30
4.1.2 INHIBITORS 30
4.1.3 MOLECULAR WEIGHT MARKERS
4.1.4 RADIOISOTOPES 31
4.1.5 BUFFERS
4.1.6 ANTIBODIES 32
4.1.7 PRIMERS 34
4.2 TECHNICAL EQUIPMENT
4.2.1 COMPUTER AND INTERNET PROGRAMS 35
4.3 CELL CULTURE 36
4.3.1 POLARIZED AIRWAY SYSTEM
4.3.2 CULTURING OF MURINE MACROPHAGES 38
4.4 GENE EXPRESSION
4.4.1 POLYMERASE CHAIN REACTION (PCR) 38
ICONTENTS

4.5 IMMUNOBLOT 39
4.6 IMMUNOCYTOCHEMISTRY AND MICROSCOPY 41
4.7 FLOW CYTOMETRY 42
4.7.1 DETERMINE CELL CYCLE CONTENT BY PROPIDIUM IODIDE (PI) STAIN 42
4.7.2 MEASUREMENT OF MITOCHONDRIAL POTENTIAL 42
4.8 LETHAL FACTOR ACTIVITY ASSAY 43
4.8.1 MAPKKIDE CLEAVAGE ASSAY
4.9 LENTIVIRUS PRODUCTION
4.10 CELL VIABILITY AND CELL DEATH 44
4.10.1 MTT ASSAY FOR CELL VIABLITY
4.10.2 TUNEL ASSAY TO DETERMINE DNA STRAND BREAKS
4.10.3 PHOSPHATIDYLSERINE EXPOSURE
4.10.4 CASPASE ACTIVATION 45
4.10.5 LDH RELEASE ASSAY
4.10.6 PROTEASOME ACTIVITY
4.11 EVALUATION OF THE POLARIZED AIRWAY SYSTEM 46
4.11.1 EPITHELIUM TRANSEPITHELIAL ELECTRICAL RESISTANCE
4.11.2 PERMEABILITY MEASUREMENTS 46
4.12 CELL ADHESION AND MIGRATION 47
4.12.1 ADHESION ASSAY
4.12.2 MIGRATION ASSAY IN BOYDEN CHAMBER
4.12.3 WOUND HEALING ASSAY
4.13 FRACTIONATION
4.13.1 FRACTIONATION OF MEMBRANE, CYTOSOL AND CYTOSKELETON 47
4.13.2 FRACTMEMBRANE AND CYTOSOL 48
5 RESULTS 49
5.1 CHARACTERIZATION OF AIRWAY EPITHELIAL CELLS 49
5.1.1 A MODEL TO STUDY ANTHRAX INFECTION 52
5.2 JUNCTION CHANGES AFTER LT TREATMENT 53
5.3 ALTERATION OF THE CYTOSKELETON AFTER LT TREATMENT 57
5.3.1 ACTIN AND TUBULIN CHANGES 57
5.3.2 MOTILITY DEFECTS
5.3.3 ADHESION ALTERATION AFTER LT TREATMENT
5.3.4 EFFECTER MOLECULES FOR CYTOSKELETON AND MOTILITY CHANGES 57
5.4 INVOLVEMENT OF THE MAPK PATHWAY
5.5 RESCUE EFFECT OF THE PERMEABILITY AND RESISTANCE 57
5.6 CELL VIABILITY AFTER LT TREATMENT
IICONTENTS

5.6.1 PROLIFERATION DECREASE DUE TO CELL CYCLE ARREST 57
5.6.2 MITOCHONDRIAL POTENTIAL CHANGES 57
5.6.3 PROTEASOME IMPAIRMENT
5.7 CONTINUES MAPKK CLEAVAGE DUE TO LETHAL TOXIN RESIDUES
5.8 MODIFICATION OF LETHAL FACTOR INFLUENCES ITS CYTOTOXIC EFFECT 57
6 DISCUSSION 57
6.1 POLARIZED LUNG EPITHELIAL - AN EXCELLENT MODEL TO STUDY LT INTOXICATION 57
6.2 LETHAL TOXIN DISRUPTS BARRIER FUNCTION IN LUNGS 57
6.3 LETHAL TOXIN ALTERS THE CYTOSKELETON
6.4 DEFECTIVE MOTILITY AND WOUND HEALING IN THE LUNGS CAUSED BY LETHAL
FACTOR EXPOSURE 57
6.5 LETHAL FACTOR STORED IN MEMBRANE COMPARTMENTS CAUSING CONTINUE
MAPKK CLEAVAGE
6.6 MINIMAL CYTOTOXICITY EFFECT OF LF IN HUMAN LUNG CELLS 57
6.7 THE MODIFICATION OF LF ON LYSINES ABOLISHED INDUCED CELL DEATH IN MURINE
MACROPHAGES
7 SUMMARY 57
8 REFERENCES 57
9 INDEX OF FIGURES 57
10 INDEX OF TABLES 57
11 INDEX OF MOVIES 57
12 APPENDIX 57
12.1 SUMMARY OF CHARACTERISTICALLY MARKER OF LUNG CELLS 57
12.2 ABBREVIATIONS 57
12.3 ALPHABETICAL LIST OF COMPANIES
12.4 PUBLICATIONS
12.5 ACKNOWLEDGEMENTS
12.6 CURRICULUM VITAE
IIIINTRODUCTION

2 INTRODUCTION
2.1 Bacillus Anthracis Infection Leads to Anthrax
Bacillus anthracis is a Gram-positive, capsulated, aerobic and non-motile bacillus. It
is related to the “Bacillus cereus group” of bacteria. To date, 89 strains have been
identified. With a size of 3-5µm in length and 1-1.5µm in width, it is one of the largest
bacteria. Under certain conditions B. anthracis forms spores that are extremely
resistant to environmental insults. Therefore, they can survive for decades in air,
water, soil and vegetation (saprophyte). Engulfment of the spores by the host leads
to germination and conversion to the vegetative, actively dividing bacterium. (Figure
2-1) One of the striking features of the bacterium is its capsule, which protects it from
the uptake by phagocytic cells. [1] The mechanism behind the conversion from the
spore to the bacterium is not well understood. However, the change of the
carbondioxide concentration and temperature between the environment and after
uptake in the organism is believed to play a role. [2]



Figure 2-1: Electron microscopy of spores and vegetative form of anthrax.
A) Spores (Sterne strain) in close proximity to the apical side of in vitro differentiated airway epithelial
cells. B) Vegetative form of B. anthracis (copied from [3])

The vegetative form of is known to cause anthrax, an acute infectious
disease that is capable of inducing death to a variety of organisms, including
humans. Three different forms of anthrax disease are known, depending on the entry
route of the infectious bacteria. They are known as cutaneous, gastrointestinal and
inhalational anthrax. The cutaneous form occurs after contact of spores with small
skin lesions. Skin colonization with B. anthracis leads to the formation of black
eschars that have given the disease its name (anthrax is the Greek word for coal).
[4] It is treatable with antibiotics such as penicillin and therefore the least fatal but
most common form. [5] Both gastrointestinal anthrax, which is caused by ingestion of
contaminated meat [6], and inhalational anthrax have a much higher mortality rate
(90-95%) among human cases.
In the past, certain outbreaks of the inhalational anthrax were reported, mostly
caused by the exposure to contaminated animal material. [7-9] Improved hygiene
and handling of those products decreased the number of cases. [10] Recently,
attention was drawn to spore contaminated letters sent to federal departments in the
4INTRODUCTION

USA. This caused the infection and deaths of approximately 15 people. [11, 12]
Interestingly, those spores were found to be genetically modified in their size and
charge, making them highly aerosolized and even more infectious. Normal spores
are much bigger. [13]
2.1.1 The Genetics Behind Bacillus Anthracis
The virulence factors of Bacillus anthracis are encoded by genes located on two
plasmids called pXO1 and pXO2.



Figure 2-2: Plasmids pXO1 and pXO2 of B. anthracis contain genes, which encode virulence
factors.

pXO1 contains the genes pag, lef and cya that encode protective antigen (PA, pag),

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents