The oxygen sensors FNR from Escherichia coli and NreABC from Staphylococcus carnosus [Elektronische Ressource] / Florian Reinhart
113 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

The oxygen sensors FNR from Escherichia coli and NreABC from Staphylococcus carnosus [Elektronische Ressource] / Florian Reinhart

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
113 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

The Oxygen Sensors FNR from Escherichia coli and NreABC from Staphylococcus carnosus Dissertation Zur Erlangung des Grades “Doktor der Naturwissenschaften” Am Fachbereich Biologie der Johannes Gutenberg-Universität Mainz Florian Reinhart geb. am 25.01.1980 in Mainz Mainz, 13.10.2010 Dekan: Prof. Dr. XXX 1. Berichterstatter: Prof. Dr. XXX 2. Berichterstatter: Prof. Dr. XXX Tag der mündlichen Prüfung: November 2010 "Doing what little one can to increase the general stock of knowledge is a respectable object of life." Charles Darwin CONTENTS  Contents 1 Abstract 12 Introduction 22.1 Oxygen sensing by bacteria 22.22.2 FNRFNR,, aa d diirreecctt O O sseensnsoorr f frromom EEssccherheriicchhiia ca coolili 44222.3 The NreBC two-component system from Staphylococcus carnosus 62+2.4 Anerobic NreB features a [4Fe4S] cluster which is required for9kinase activity2.52.5 NNrreeAA, a , a GGAAF dF doommaainin prprootteeiinn wwiitthh uunnkknnoowwnn ffuncunctitionon 11113 Materials & Methods 133.1 Strains and plasmids3.13.1..11 BBacacttereriiaall ssttrraiainnss aanndd p pllasasmmiiddss 13133.1.2 Long-term storage of bacterial strains 143.2 Bacterial growth and media3.23.2..11 GrGroowwtthh o off EEsscchheerriicchihia cola colii 14143.2.3 Growth of Staphylococcus carnosus 143.2.4 Media and buffers for Escherichia coli 153.2.

Sujets

Informations

Publié par
Publié le 01 janvier 2010
Nombre de lectures 8
Langue English
Poids de l'ouvrage 7 Mo

Extrait


The Oxygen Sensors FNR from
Escherichia coli and NreABC from
Staphylococcus carnosus




Dissertation
Zur Erlangung des Grades
“Doktor der Naturwissenschaften”




Am Fachbereich Biologie
der Johannes Gutenberg-Universität Mainz



Florian Reinhart
geb. am 25.01.1980 in Mainz



Mainz, 13.10.2010




















Dekan: Prof. Dr. XXX

1. Berichterstatter: Prof. Dr. XXX
2. Berichterstatter: Prof. Dr. XXX

Tag der mündlichen Prüfung: November 2010


"Doing what little one can to increase the general stock of knowledge is a
respectable object of life."

Charles Darwin


CONTENTS 

Contents


1 Abstract 1
2 Introduction 2
2.1 Oxygen sensing by bacteria 2
2.22.2 FNRFNR,, aa d diirreecctt O O sseensnsoorr f frromom EEssccherheriicchhiia ca coolili 4422
2.3 The NreBC two-component system from Staphylococcus carnosus 6
2+2.4 Anerobic NreB features a [4Fe4S] cluster which is required for
9kinase activity
2.52.5 NNrreeAA, a , a GGAAF dF doommaainin prprootteeiinn wwiitthh uunnkknnoowwnn ffuncunctitionon 1111
3 Materials & Methods 13
3.1 Strains and plasmids
3.13.1..11 BBacacttereriiaall ssttrraiainnss aanndd p pllasasmmiiddss 1313
3.1.2 Long-term storage of bacterial strains 14
3.2 Bacterial growth and media
3.23.2..11 GrGroowwtthh o off EEsscchheerriicchihia cola colii 1414
3.2.3 Growth of Staphylococcus carnosus 14
3.2.4 Media and buffers for Escherichia coli 15
3.2.5 Media and buffers for Staphylococcus carnosus 16
3.2.6 Inducers 19
3.2.7 Antibiotics 20
3.3 Protein isolation procedures
3.3.1 Isolation of GST-FNR 20
3.33.3..22 IsIsoollatiation oon off ((66xxHHisis))--NNrreeAA 2121
3.3.3 Isolation of (6xHis)-NreB 21
3.3.4 Isolation of MalE-NreC 21
3.3.5 Immunoprecipitation of NreB from cell homogenates (pull-down assay) 22
3.33.3..66 BBrraaddffoorrdd prprototeinein aassssayay 2323
 CONTENTS 
3.43.4 TThhiiooll l laabbeelilingng mmeeththooddss
3.4.1 Cysteine labeling agents 23
3.4.2 In vitro thiol labeling procedures 23
3.4.3 In vivo thiol labeling procedures 24
3.4.4 Two-step thiol labeling procedure 27
3.43.4..55 SDS-PAGSDS-PAGEE 2727
3.4.6 Semi-dry western blotting 29
3.4.7 Quantitative evaluation of mBBr and qBBr labeling of FNR 31
3.4.8 Quantitative evaluation of mBBr labeling of NreB 31
3.43.4..99 EEllececttrroo mmoobbiilliittyy sshhiifftt asasssaayy ((EEMMSSAA)) 3232
3.4.10 Protein crosslink assay 33
3.5 MALDI-TOF
3.5.1 In vivo alkylation of FNR with N-ethylmaleimide (NEM) or iodoacetate
3434(IAA) f(IAA) foorr MMALALDDII-T-TOOFF
3.5.2 In vivo alkylation of NreB with iodoacetate (IAA) for MALDI-TOF 34
3.5.3 MALDI-TOF parameters 35
3.63.6 MMoolleeccuullaarr ggeenneticetic mmeeththodsods
3.6.1 Agarose gel electrophoresis 36
3.6.2 Isolation of genomic DNA from Staphylococcus carnosus 37
3.6.3 Isolation of plasmid DNA from Staphylococcus carnosus 37
3.63.6..44 IsIsololatiation oon off pl plaassmmiidd DDNNAA ffrroomm EEssccherheriicchhiia ca coolili 3838
3.6.5 Polymerase chain reaction (PCR) 38
3.6.6 DNA restriction, ligation and sequencing 40
3.6.7 Construction of NreB mutant C59S C62S: IMW1884 40
3.6.8 Construction of pQE30nreC 41
3.63.6..99 PrProottoploplaasst-t-trtraannssffoorrmmaatitionon ooff SSttapaphyhyllococococccusus c caarrnnososusus 4343
3.6.10 Electro-transformation of Escherichia coli 44
3.7 Databases 44
4 Results 45
4.1 Labeling FNR Cys residues with mBBr or qBBr
4.1.1 Accessibility of FNR Cys residues to mBBr or qBBr 45

 CONTENTS 
4.14.1..22 DDeeteteccttioionn oof Ff FNNRR wwiithth FFNNRR--aannttiisseerurumm 4747
4.2 In vivo Cys accessibilty of aerobic and anaerobic FNR
4.2.1 FNR-specific fluorescence calibration 47
4.2.2 Differentiatioin between aerobic and anaerobic FNR 49
2+2+4.24.2..33 KKiinneticeticss ooff [ [44FFe4Se4S]] FNFNRR ccoonnvvererssiioonn tto apo apoFNoFNRR uuppoonn exexppoossuurree tto airo air 5050
4.3 Differentiation of FeS-containing FNR and apoFNR by AMS labeling
4.3.1 Accessibility of Cys residues to AMS in aerobically and anaerobically
5151pupurriiffiieded FFNNRR
4.3.2 Accessibility of Cys residues to AMS in isolated and reconstituted
2+ 52[4Fe4S] FNR
4.3.3 In vivo Cys accessibility to AMS 52
4.34.3..44 In vIn viivvoo ddeetteectctiioonn ooff C Cyys s ddiisusullffiiddeess inin FFNNRR 5252
4.4 Labeling Cys residues of NreB from Staphylococcus carnosus
4.4.1 Labeling Cys residues of NreB with mBBr 54
4.4.2 Quantifying accessible Cys residues of NreB in vitro 56
4.44.4..33 TwTwoo--sstteepp inin v viivvoo llaabbeleliinngg of of CCyyss rresesiidduueses ooff NNrreBeB 5757
4.4.4 Two forms of NreB can be differentiated in vitro and in vivo 58
4.4.5 Numbering of accessible Cys residues by mass spectrometry 60
2+4.4.6 Kinetics of [4Fe4S] NreB conversion to apoNreB caused by oxygen 63
4.5 Significance of NreA for the NreBC two-component system
4.5.1 In silico analysis of NreA 65
4.5.2 Electro mobility shift assays with NreA (EMSAs) 66
4.5.3 Formaldehyde crosslinking of NreA to NreB 67
4.54.5..44 FoForrmmaalldedehyhydede crcroosssslliinnkkiingng ooff N NrreeAA toto NNrreeCC 7171
4.5.5 Cloning of NreC 73
5 Discussion 74
5.1 Function and properties of the oxygen sensor FNR from E.coli
5.1.1 The physiological relevant form of FNR in aerobically growing E. coli is
74apoFNR
5.1.2 ApoFNR forms no disulfide bonds in vivo 76
2+2+5.15.1..33 OOxxyyggeenn ccaaususeess aa t twwoo--ssttepep ininaacctitivvaattiioonn ooff [[44FFe4Se4S]] FNRFNR 7676
 CONTENTS 
2+5.15.1..44 PPoossssiibbllee ffuncunctitioonnss ooff [2 [2FFee22SS]] FNFNRR an and apd apooFFNNRR in vin viivvoo 7777
5.1.5 Comparison of FNR and FNR 77Ec Bs
5.2 The oxygen sensing two-component system NreBC from
Staphylococcus carnosus
5.25.2..11 In vIn viivvoo mmöössssbbauauerer ssttududiieess on Non NrreBeB araree difdifffiiccultult 7979
5.2.2 Functional Cys labeling studies on NreB 79
5.2.3 A two-step labeling procedure allows quantitative labeling studies on
80NreB
5.25.2..44 AApopoNNrreeBB i iss tthehe phyphysiosiollooggiiccaall rreelelevvaantnt f foorrmm ooff N NrreeBB iin n aaeerroobibiccaallllyy
83growing S. carnosus
2+5.2.5 Possible functions of the intermediate product [2Fe2S] NreB 84
2+5.2.6 The [4Fe4S] cluster is a universal cofactor for oxygen sensing in
8585babacctteerriaia
5.3 Significance of NreA for the NreBC two-component system
5.3.1 Structure comparison of NreA and CodY 86
5.3.2 Direct DNA-binding of NreA 88
5.35.3..33 NNrreeAA, a n, a noovveell ninitrtratatee sseennssoorr iinn SS..ccararnosnosusus?? 8989
5.3.4 Sensing nitrate in E. coli: the NarXL system 90
5.3.5 The tri-component system NreABC 90
66 LisListt o off abbabbrreveviiatiatioonsns 9393
7 Publications 95
88 RReeffeerrencenceess 9797
9 Curriculum vitae 107

 ABSTRACT 
1. Abstract

Molecular oxygen is a widespread substrate and signal molecule in nature. Evolution
has developed a large number of sensory devices in bacteria for controlling the
expression of catabolic, biosynthetic and protective reactions in response to O . 2
Under anoxic conditions, the oxygen sensor FNR from Escherichia coli is in the
2+ 2+ active state. Oxygen converts active [4Fe4S] FNR to [2Fe2S] FNR and further to
apoFNR, which are both physiological inactive. The presence of apoFNR in
aerobically and anaerobically growing E. coli was analyzed in vivo using thiol
reagents. Alkylation of Cys residues in FNR and counting the labelled residues by
mass spectrometry showed a form of FNR corresponding to apoFNR in aerobic
bacteria. Exposure of anaerobic bacteria to oxygen caused conversion to apoFNR
within 6 min.

The gram positive bacterium Staphylococcus carnosus is able to grow under
anaerobic conditions by nitrate and nitrite respiration and by fermentation. The
NreBC two-component system stimulates the expression of genes for nitrate
respiration under anaerobic conditions. NreB is a cytoplasmic sensor histidine kinase
2+using a PAS domain with a [4Fe4S] cofactor for sensing O . The state of NreB was 2
studied in vivo and in vitro by measuring the reactivity and accessibility of Cys
residues to alkylating agents. The change in Cys accessibility allowed determination
2+ of the half-time for the conversion of [4Fe4S] NreB to apoNreB after the addition of
2+oxygen. In anaerobic bacteria most of the NreB exists as [4Fe4S] NreB, whereas in
aerobic bacteria apoNreB is predominant and represents the physiological form. The
number of accessible Cys residues was also determined by iodoacetate alkylation
followed by mass spectrometry of Cys-containing peptides.

The function of NreA in the NreABC system is unclear. This study shows that NreA
interacts with NreB and NreC. The presence of a GAF domain in NreA, which is
known to bind small molecules as cofactors, qualifies NreA as a candidate for a
nitrate sensor. Until now a nitrate sensor has not been des

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents