The significance of coherent flow structures for the turbulent mixing in wall-bounded flows [Elektronische Ressource] / vorgelegt von Christian J. Kähler
185 pages
English

The significance of coherent flow structures for the turbulent mixing in wall-bounded flows [Elektronische Ressource] / vorgelegt von Christian J. Kähler

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
185 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

The significance of coherent flowstructures for the turbulent mixing inwall-bounded flowsDissertationzur Erlangung des Doktorgrades derMathematisch-Naturwissenschaftlichen Fakultaten¨ derGeorg-August-Universitat¨ zu Gottingen¨Vorgelegt vonChristian J. Kahler¨aus Buchholz i. d. NordheideGottingen¨ 2004D7Referent: Professor Dr. H. EckelmannKorreferent: Dr. D. RonnebergerTag der mundlichen¨ Prufung:¨ 1. July 2004Contents1 Introduction 52 Particle Image Velocimetry 132.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.2 Generation of appropriate tracer-particles . . . . . . . . . . . . . . . . . . . 162.2.1 Description of the experiment . . . . . . . . . . . . . . . . . . . . . 162.2.2 Particle size analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 172.2.3 Flow visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232.3 Registration of the particle images . . . . . . . . . . . . . . . . . . . . . . . 232.3.1 Principles of CCD sensors . . . . . . . . . . . . . . . . . . . . . . . 242.3.2 Quantum efficiency and signal-to-noise ratio . . . . . . . . . . . . . 252.3.3 CCD architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262.4 Particle image analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282.4.1 Particle image density, loss of pairs and velocity gradients . . . . . . 302.4.

Informations

Publié par
Publié le 01 janvier 2004
Nombre de lectures 44
Langue English
Poids de l'ouvrage 29 Mo

Extrait

The significance of coherent flow
structures for the turbulent mixing in
wall-bounded flows
Dissertation
zur Erlangung des Doktorgrades der
Mathematisch-Naturwissenschaftlichen Fakultaten¨ der
Georg-August-Universitat¨ zu Gottingen¨
Vorgelegt von
Christian J. Kahler¨
aus Buchholz i. d. Nordheide
Gottingen¨ 2004D7
Referent: Professor Dr. H. Eckelmann
Korreferent: Dr. D. Ronneberger
Tag der mundlichen¨ Prufung:¨ 1. July 2004Contents
1 Introduction 5
2 Particle Image Velocimetry 13
2.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Generation of appropriate tracer-particles . . . . . . . . . . . . . . . . . . . 16
2.2.1 Description of the experiment . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Particle size analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Flow visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Registration of the particle images . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Principles of CCD sensors . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Quantum efficiency and signal-to-noise ratio . . . . . . . . . . . . . 25
2.3.3 CCD architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Particle image analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.1 Particle image density, loss of pairs and velocity gradients . . . . . . 30
2.4.2 Signal-peak detection and displacement determination . . . . . . . . 31
3 Stereo-scopic Particle Image Velocimetry 37
3.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.1 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.2 Scheimpflug condition . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Evaluation of stereo-scopic image pairs . . . . . . . . . . . . . . . . . . . . 42
3.2.1 Determination of the mapping function . . . . . . . . . . . . . . . . 42
3.2.2 Image warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.3 Vector field warping . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.4 Interrogation window warping . . . . . . . . . . . . . . . . . . . . . 45
3.3 Calibration validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4 Multiplane Stereo Particle Image Velocimetry 49
4.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Four-pulse-laser System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.1 Performance of spatial light-sheet separation . . . . . . . . . . . . . 53
4.2.2 Generation and controlling of the timing sequence . . . . . . . . . . 54
4.3 Modes of Operation I – In-plane flows . . . . . . . . . . . . . . . . . . . . . 55
4.4 of II – Out-of-plane flows . . . . . . . . . . . . . . . . . . 57
4.5 Simplified recording system . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.6 Polarisation effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3Contents
4.7 Monochromatic aberrations . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.8 Feasibility study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5 Investigation of the xy-plane 69
5.1 The statistical description of turbulence . . . . . . . . . . . . . . . . . . . . 69
5.2 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Statistical properties of the flow . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.1 Single point statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.2 Spatial auto- and cross-correlation functions . . . . . . . . . . . . . . 79
5.4 Properties of coherent velocity structures . . . . . . . . . . . . . . . . . . . . 90
5.4.1 Shear-layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4.2 Ejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.3 Sweep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6 Investigation of the xz-plane 97
6.1 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2 Statistical properties of the buffer layer . . . . . . . . . . . . . . . . . . . . . 101
6.2.1 Single point statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2.2 Spatial auto-correlation functions . . . . . . . . . . . . . . . . . . . 105
6.2.3 cross-correlation . . . . . . . . . . . . . . . . . . . 109
6.3 Spatio-temporal buffer layer statistics . . . . . . . . . . . . . . . . . . . . . 114
6.4 Properties of coherent velocity structures . . . . . . . . . . . . . . . . . . . . 121
6.4.1 Low-speed streaks . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.4.2 Sweeps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.4.3 Ejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7 Investigation of the yz-plane 135
7.1 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.2 Statistical properties of the log-law region . . . . . . . . . . . . . . . . . . . 138
7.2.1 Spatial correlations with . . . . . . . . . . . . . . . . . . . . 141
7.2.2 Spatial cross-correlations with . . . . . . . . . . . . . . . . 143
7.3 Spatio-temporal correlations with . . . . . . . . . . . . . . . . . . . 146
7.4 with . . . . . . . . . . . . . . . . . . . 152
7.5 Properties of coherent velocity structures . . . . . . . . . . . . . . . . . . . . 155
7.5.1 Loop-shaped structures . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.5.2 Sweeps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.5.3 Stream-wise vortices . . . . . . . . . . . . . . . . . . . . . . . . . . 160
8 Summary 163
Bibliography 169
Commonly used symbols 177
Index 180
4



1 Introduction
One of the fascinating phenomena of natural science is the turbulent state of the macroscopic
flow motion in fluid-mechanics. Beside the omnipresent variety and beauty of the turbulent
motion, the inherent fascination and attraction is strongly connected with the enormous dif-
ficulties associated with a mathematical and physical understanding. The principal difficulty,
with respect to an inviscid fluid or a classical gas of point particles in equilibrium, results from
the strong non-linearity in the conservation equation and the dissipative character e.g. the
flux of energy from the large scales or eddies into progressively smaller and smaller ones. As
a general mathematical solution of non-linear, non-equilibrium systems is out of reach from
the present point of view, the properties of idealised flows with simple geometries are exam-
ined experimentally and numerically. Of primary interest is the two-dimensional turbulent
boundary layer flow of an incompressible fluid along a flat plate with zero pressure gradient,
because this flow reveals simultaneously two characteristic phenomena of turbulence, namely
the effects of near-wall turbulence and the effects of intermittency, e.g the interaction of the
turbulent boundary layer with the laminar outer flow according to figure 1.1. This particular
flow evolves from a laminar boundary layer flow when the Reynolds number
is sufficiently high. In this case flow disturbances with a particular wavelength grow, become
unstable and share the energy from the mean motion over the degrees of freedom by non-linear
interaction.
U / U1.2 drot U = 0
y
rot U = 00.4 d
x
1
FIGURE 1.1: Instantaneous structure of a turbulent boundary layer and mean velocity profile after [37]
Beginning with the early channel and pipe flow measurements, published by Laufer [68,
69], and the zero pressure gradient boundary layer benchmark investigations along a flat plate
by Klebanoff [55], turbulent boundary layers have been examined extensively because of their
technological importance, their significance for the development of fundamental turbulence
models and for the validation of numerical flow simulations [89, 96]. The bulk of the quanti-
tative investigations has been performed with intrusive single-point measurement techniques
[21] such as pressure probes and hot-wire anemometer, but also non-intrusive flow visualisa-
tions techniques have been frequently applied to examine qualitatively the global features of
5




dd
1 Introduction
the flow [15, 24, 25, 28, 54, 57, 58, 59, 79, 81, 84, 92, 103, 110]. Although the conclusive-
ness of these visualisations is often questionable, because of the complexity of the turbulent
motion and inherent problems associated with the interpretations of the flow visualisation re-
sults as discussed by Hama [26], these investigations have improved the understanding of
turbulence to a large extent, because it was possible to detect coherent flow structures such
as low-speed streaks, shear-layers, stream-wise vortices and loop-shapedes and to
illustrate their significance for the turbulent mixing in wall-normal direction. In the follow-
ing years, a number of partially contradicting vortical models have been proposed, designated
as hairpin, horseshoe or lambda vortices in the literature [83, 98, 99], to link the coherent
structures and processes identified as illustrated in figure 1.2

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents