Theoretical investigations in nucleophilic organocatalysis [Elektronische Ressource] / Boris Maryasin. Betreuer: Hendrik Zipse
214 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Theoretical investigations in nucleophilic organocatalysis [Elektronische Ressource] / Boris Maryasin. Betreuer: Hendrik Zipse

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
214 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München Theoretical Investigations in Nucleophilic Organocatalysis von Boris Maryasin aus Nizhny Novgorod, Russland 2011 Erklärung Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 (in der Fassung der sechsten Änderungssatzung vom 16. August 2010) von Prof. Dr. Hendrik Zipse betreut. Ehrenwörtliche Versicherung Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet. München, 09.05.2011 Boris Maryasin Dissertation eingereicht am 09.05.2011 1. Gutachter: Prof. Dr. Hendrik Zipse 2. Gutachter: Prof. Dr. Christian Ochsenfeld Mündliche Prüfung am 10.06.2011 Die vorliegende Arbeit wurde in der Zeit von Juli 2007 bis Januar 2011 am Department Chemie und Biochemie der Ludwig-Maximilians-Universität München unter der Anleitung von Herrn Prof. Dr. Hendrik Zipse durchgeführt. To my family Acknowledgments My first “thank you very very much!” goes to Prof. Dr. Hendrik Zipse for the interesting and beautiful time in his research group, for support and for inspiration! Critical way of thinking, ideas, questions, comments, constructive discussions from Professor Zipse do help!

Informations

Publié par
Publié le 01 janvier 2011
Nombre de lectures 43
Langue English
Poids de l'ouvrage 13 Mo

Extrait



Dissertation zur Erlangung des Doktorgrades
der Fakultät für Chemie und Pharmazie
der Ludwig-Maximilians-Universität München







Theoretical Investigations in Nucleophilic
Organocatalysis












von
Boris Maryasin
aus
Nizhny Novgorod, Russland



2011 Erklärung

Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom
29. Januar 1998 (in der Fassung der sechsten Änderungssatzung vom 16. August 2010) von
Prof. Dr. Hendrik Zipse betreut.





Ehrenwörtliche Versicherung

Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet.


München, 09.05.2011





Boris Maryasin






Dissertation eingereicht am 09.05.2011
1. Gutachter: Prof. Dr. Hendrik Zipse
2. Gutachter: Prof. Dr. Christian Ochsenfeld

Mündliche Prüfung am 10.06.2011 Die vorliegende Arbeit wurde in der Zeit von Juli 2007 bis Januar 2011 am Department
Chemie und Biochemie der Ludwig-Maximilians-Universität München unter der Anleitung
von Herrn Prof. Dr. Hendrik Zipse durchgeführt.










To my family Acknowledgments
My first “thank you very very much!” goes to Prof. Dr. Hendrik Zipse for the
interesting and beautiful time in his research group, for support and for inspiration! Critical
way of thinking, ideas, questions, comments, constructive discussions from Professor Zipse
do help! I do appreciate everything that I have got from my Teacher and I will never forget.
Vielen herzlichen Dank!
I thank Prof. Dr. Christian Ochsenfeld for agreeing to be my “Zweitgutachter”! I
would like to thank also Prof. Dr. Konstantin Karaghiosoff, Prof. Dr. Manfred Heuschmann,
Prof. Dr. Paul Knochel and Prof. Dr. Andreas Kornath for the interest to the present work and
for accepting to be my examiners.
I am very indebted to Prof. Yitzhak Apeloig, for giving me the opportunity to spend
several months in his group at the Technion – Israel Institute of Technology (Haifa, Israel)
during my master study – this was my first serious meeting with my beloved computational
chemistry! And I say “thank you” to my advisors from bachelor and master studies in Nizhny
Novgorod State University (Nizhny Novgorod, Russia) – to Prof. Sergey Zelentsov and Prof.
Alexey Fedorov. During my PhD study I was happy to visit group of Prof. Shi Min from
Shanghai Institute of Organic Chemistry (China, Shanghai), thank you very much, Prof. Shi,
for fruitful discussions and kind help!
Thank you, my dear friends and colleagues Johnny Hioe and Elija Wiedemann for
careful reading and correcting of the present manuscript! My thanks come to all present as
well as former members of our research group, especially to Dr. Yin Wei, Dr. Ingmar Held,
Dr. Yinghao Liu, Johnny Hioe, Sven Österling, Evgeny Larionov, Florian Achrainer,
Christoph Lindner, Raman Tandon, Dr. Valerio D’Elia, Elija Wiedemann, Regina Bleichner,
Jowita Humin, Florian Barth, Michael Miserok, Cong Zhang and to all my friends in
Germany!
I thank Ludwig-Maximillians-Universität München for financial support and Leibniz-
Rechenzentrum München for providing computational facilities.
And the huge “Thank You” I give to my family. My parents and sister are indeed
“holding” me like atlantes, even via Skype from Russia. I do not really want to generate
words now – it will be always too small and weak as compared to what I feel, thinking about
you. My destiny was so kind to bring me “additional” present – another “atlant” – or, strictly
speaking, – “caryatid” – Veronika, my love! Dear papa and mama, Irka&Mashka and my
Nika, this work is dedicated to you! Thank you very much for your love!
List of Abbreviations and Symbols

Degree Celsius °C
‡ transition state
Å Ångstrøm
a.u. atomic units
Ac acetyl
aryl Ar
aug-cc-pVXZ Dunning’s correlation consistent basis set (X = D (double), X = T
(triple), X = Q (quadruple)) augmented (aug) with diffuse functions
aza-MBH aza-Morita-Baylis-Hillman reaction
B2K-PLYP double-hybrid density functional for thermochemical kinetics developed
by Martin
B2-PLYP double-hybrid density functional by Grimme
B3LYP the hybrid density functional including Becke’s three-parameter
exchange functional and Lee-Yang-Parr’s correlation functional
B97-D Grimme’s density functional including dispersion
Becke's 1998 revisions to Becke’s 1997 hybrid density functional (B97) B98
BP Becke-Perdew density functional
BP86 combination of the local Slater-Dirac exchange functional, the
correlation functional by Vosko, Wilk, and Nusair (VWN (V)), Becke’s
gradient corrected exchange functional B88, and the gradient corrected
correlation functional by Perdew (P86)
BPC bifunctional phosphane catalyst
BSSE basis set superposition error
cal calorie
calculated calc.
complete basis set CBS
CCSD(T) coupled-cluster with single and double and perturbative triple
excitations
conv. convergence
day d
1,4-diazabicyclo[2.2.2]octan DABCO
def2-QZVPP second-generation default (def2) valence quadruple zeta (QZV) heavily
polarized (PP) basis set by Ahlrichs
DFT density functional theory
4-dimethylaminopyridine DMAP
dimethyl sulfoxide DMSO
E frustration energy FLP
EPR electron paramagnetic resonance
eqn. equation
ethyl Et
total energy E tot
EWG electron withdrawing group
exp. experimental
FLP frustrated Lewis pair
gaussian-2 theory G2
cheaper variation of G2 G2(MP2)
G3 gaussian-3 theory
G3(MP2)MPW1K(+) adaptation of G3(MP2) theory (cheaper variant of G3) based on
geometries and zero point vibrational energies calculated at the MPW1K/6-31+G(d) level of theory
G3B3 G3 with geometries and zero-point vibrational energies calculated at
B3LYP/6-31G(d) level of theory
G3large an extension of 6-311G(d,p) basis set with more flexible polarization
functions (2df) and polarization of the core electrons (3d2f on Na-Ar).
This basis set is used as the ‘limiting HF’ basis set in the G3 method.
G3MP2large G3large basis set excluding core polarization functions.
G3MPW1K(+) G3B3 using MPW1K/6-31+G(d) instead of B3LYP/6-31G(d)
GIAO gauge including (invariant) atomic orbitals
-34Planck constant (6.62 × 10 J s) h
h Hour
HOMO highest occupied molecular orbital
IGLO individual gauge for localized orbitals
Int intermediate
Joule J
K Kelvin
k rate constant
k kilo
-23 -1
k Boltzmann constant (1.38 × 10 J K ) B
Lewis acid LA
LB Lewis base
LP Lewis pair
LUMO lowest unoccupied molecular orbital
M05-2X the hybrid functional of Truhlar and Zhao
Michael acceptor MA
MAD mean absolute deviation
MBH Morita-Baylis-Hillman reaction
MCA methyl cation affinity
Me methyl
minute min.
MM3 molecular mechanics developed by Allinger
MO molecular orbital
mol mole
MP2(FC) second-order Møller–Plesset perturbation theory with frozen core
approximation
MP2(FULL) second-order Møller–Plesset perturbation theory; inner-core electrons
are included
MP2-5 MP2(FC)/6-31+G(2d,p)//B98/6-31G(d)
MPW1K modified Perdew-Wang one parameter hybrid density functional for
kinetics
MVK methyl vinyl ketone
MVKA methyl vinyl ketone affinity
MVKA-c methyl vinyl ketone affinity (cyclic complex)
NBO natural bond orbital
nuclear magnetic resonance NMR
NPA natural population analysis
Nu nucleophile
OPLS-AA optimized potentials for liquid simulations in the all-atom version –
force field developed by Jorgensen
polarizable continuum model PCM
PDLB2 pyridine-derived Lewis base catalyst Ph phenyl
pK negative lg of acid dissociation constant (K ) aa
PNP p-nitrophenol
ppm parts per million
common organic substituent or (R)-configured enantiomer R
-1 -1R universal gas constant (8.314510 J mol K )
RDS rate-determining state
RHF restricted Hartree-Fock
RT room temperature
(S)-configured enantiomer S
S Entropy
SCF self-consistent field
SCS-MP2 spin-component scaled second-order Møller–Plesset perturbation theory
T Temperature
half-life time t1/2
THF Tetrahydrofuran
TS transition state
TZVP the Ahlrichs’ type triple-ζ basis sets with one set of polarization
functions
the Ahlrichs’ type triple-ζ basis sets with two sets of polarization TZVPP
functions
UAHF united Atom for Hartree-Fock
UAKS united atom Kohn-Sham
vs. Versus
“X” ketone affinity XKA
X-YZ+G(ndf,mpd) valence-double-ζ basis set by Pople and coworkers supplemented by
polarization (df,pd) and diffuse (+ or ++) functions, e.g. 6-31+G(2d,p)
X-YZW+G(ndf,mpd) valence-triple-ζ basis set by Pople and coworkers supplemented by
polarization (df,pd) and diffuse (+ or ++) functions, e.g. 6-
311++G(2d,2p)
ZPE zero-point energy
δ chemical shift

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents