Theory and numerics of higher gradient inelastic material behavior [Elektronische Ressource] / von Tina Liebe
142 pages
English

Theory and numerics of higher gradient inelastic material behavior [Elektronische Ressource] / von Tina Liebe

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
142 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Informations

Publié par
Publié le 01 janvier 2003
Nombre de lectures 25
Langue English
Poids de l'ouvrage 2 Mo

Extrait

Theory and numerics of higher gradient
inelastic material behavior
vom Fachbereich Maschinenbau und
Verfahrenstechnik der Universität Kaiserslautern
zur Verleihung des akademischen Grades
Doktor–Ingenieur (Dr.–Ing.)
genehmigte Dissertation
von Dipl.-Ing. Tina Liebe
aus Magdeburg
Hauptreferent: Prof. Dr.–Ing. Paul Steinmann
Korreferenten: Prof. Dr. rer. nat. B. Svendsen
Prof. Dr. A. Benallal
Vorsitzender: Prof. Dr.–Ing. H.-D. Hellmann
Dekan: Prof. Dr.–Ing. Paul Steinmann
Tag der Einreichung: 19. Februar 2003
Tag der mündlichen Prüfung: 07. April 2003
Kaiserslautern, April 2003
D 386Preface
The work presented in this thesis has been carried out during the period 1999-2003 at the Chair of
Applied Mechanics at the University of Kaiserslautern. The financial support of the DFG (Deutsche
Forschungsgemeinschaft) within the project ’Theorie und Numerik von Mono- und Polykristallplastizität
unter Berücksichtigung höherer Gradienten’ (STE-544/7-1-3) is gratefully acknowledged.
In the first place, I would like to thank Professor Paul Steinmann for his constant support and guidance,
his never ending patience, inspiring comments and the time he put into my thesis. He motivated me to
come to Kaiserslautern and take up this PhD-project and I owe him a great deal for making these last
four years a successful and enjoyable stage of my life.
My sincere thanks go to Professor Bob Svendsen and Professor Ahmed Benallal, who spontaneously
agreed to become correferees for my thesis. Many scientific discussions and valuable remarks encour-
aged and helped me getting a deeper insight into the subject of my work, and at some stages even more
enlightening were the insights they provided to the overall picture.
Special thanks go to Professor Erwin Stein who introduced me to the fascinating world of mechanics, in
particular computational mechanics, already during my study at the university in Hanover. Furthermore,
I would like to thank Professor Kaspar Willam for his hospitality and support during my stay at the
Colorado University Boulder, where I carried out my diploma thesis. The open-minded atmosphere I
encountered there raised my interest to carry on with scientific research.
I appreciated the pleasant working climate at the Chair of Applied Mechanics at the University of
Kaiserslautern, which is undoubtly due to my colleagues. In particular, I like to thank my room-mates
during the period of this work: Thomas Svedberg, Ellen Kuhl and Bernd Kleuter, who made our office-
life a great deal more enjoyable.
Last, but not least, I would like to express my gratitude to my parents and my brother, Jörg, for their
continuous encouragement and for always standing behind me. Especially, I thank Klaus Schmitt for
his support - not to forget his sometimes funny but always valuable questions and comments during the
reading and re-reading of the manuscript at various stages of its development.
Kaiserslautern, in April 2003 Tina LiebeContents
Preface i
Notation vii
Introduction 1
1 Concepts of the formulation 9
1.1 Internal degrees of freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Internal variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Continuum dislocation theory 13
2.1 Kinematics of the dislocation tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.1 Incompatibility measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Exploitation of the Positive Dissipation Principle . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Simplified gradient model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3 Phenomenological isotropic gradient plasticity 21
3.1 Thermodynamics of phenomenological local plasticity . . . . . . . . . . . . . . . . . . 22
3.2 Thermodynamics of gradient plasticity . . . . . . . . . . . . . . . . . 22
3.3 Isotropic local and gradient prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Well-posedness of the coupled problem . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Numerical treatment of phenomenological gradient plasticity . . . . . . . . . . . . . . . 27
3.5.1 Strong form of the coupled problem . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.2 Weak form of the coupled . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.3 Temporal discretization of the coupled problem . . . . . . . . . . . . . . . . . . 29
3.5.4 Spatial of the coupled problem . . . . . . . . . . . . . . . . . . . 30
3.5.5 Monolithic iterative solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.5.1 Constitutive update . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5.5.2 Active set search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 Numerical examples of phenomenological gradient plasticity . . . . . . . . . . . . . . . 34
3.6.1 1D-model problem: bar under uniaxial tension . . . . . . . . . . . . . . . . . . 35
3.6.1.1 Hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6.1.2 Softening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6.2 Geometrically non-linear model problem: panel under tension . . . . . . . . . . 42iv Contents
4 Gradient plasticity in single and double slip 45
4.1 Kinematics of single crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Thermodynamics of single crystal gradient plasticity . . . . . . . . . . . . . . . . . . . 48
4.3 Numerical treatment of single crystal gradient plasticity . . . . . . . . . . . . . . . . . . 49
4.4 examples of single crystal . . . . . . . . . . . . . . . . . . 51
4.4.1 Single slip model problem: simple shear of a crystalline strip . . . . . . . . . . . 53
4.4.2 Double slip model simple shear of a strip . . . . . . . . . . 55
5 Phenomenological isotropic gradient damage 59
5.1 Thermodynamics of phenomenological local damage . . . . . . . . . . . . . . . . . . . 60
5.2 of gradient damage . . . . . . . . . . . . . . . . . 61
5.3 Isotropic local and gradient prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4 Well-posedness of the coupled problem . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5 Numerical treatment of phenomenological gradient damage . . . . . . . . . . . . . . . . 66
5.5.1 Strong form of the coupled problem . . . . . . . . . . . . . . . . . . . . . . . . 66
5.5.2 Weak form of the . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5.3 Temporal discretization of the coupled problem . . . . . . . . . . . . . . . . . . 68
5.5.4 Spatial of the coupled problem . . . . . . . . . . . . . . . . . . . 69
5.5.5 Monolithic iterative solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.5.5.1 Constitutive update . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.6 Numerical examples of phenomenological gradient damage . . . . . . . . . . . . . . . . 72
5.6.1 1D-model problem: bar under uniaxial tension . . . . . . . . . . . . . . . . . . 72
5.6.2 2D-model panel in tension . . . . . . . . . . . . . . . . . . . . . . . . 77
5.6.3 Geometrically non-linear model problem: bar under uniaxial tension . . . . . . . 78
6 Material Force Method coupled to damage 81
6.1 Continuum format of J-integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2 Spatial versus material motion problem . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3 Hyperelasticity coupled to isotropic damage . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.1 Spatial motion problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.2 Material motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.4 Numerical treatment incorporating the Material Force Method . . . . . . . . . . . . . . 85
6.4.1 Weak form of the coupled problem . . . . . . . . . . . . . . . . . . . . . . . . 86
6.4.1.1 Spatial motion . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.4.1.2 Material motion problem . . . . . . . . . . . . . . . . . . . . . . . . 87
6.4.2 Discretization of the coupled problem . . . . . . . . . . . . . . . . . . . . . . . 87
6.4.2.1 Spatial motion problem . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.4.2.2 Material motion . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4.2.3 Discretized format of J-integral: Material Force Method . . . . . . . . 90
6.5 Numerical examples of the Material Force Method coupled to damage . . . . . . . . . . 91
6.5.1 Specimen with elliptic hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.5.2 with center crack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.5.3 MBL-specimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Summary and Outlook 99Contents v
A A few notes about continuum mechanics 103
A.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.1.1 Spatial motion problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.1.2 Material motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.1.3 Spatial versus material motion problem . . . . . . . . . . . . . . . . . . . . . . 105
A.2 Quasi–static balance of momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.2.1 Spatial motion problem . . . . . . . . . . . . .

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents