Thermomechanics of fibre reinforced epoxies for cryogenic presurized containment [Elektronische Ressource] / Leonardo Raffaelli
138 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Thermomechanics of fibre reinforced epoxies for cryogenic presurized containment [Elektronische Ressource] / Leonardo Raffaelli

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
138 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Lehrstuhl fur LeichtbauThermomechanics of Fibre Reinforced Epoxies forCryogenic Pressurized ContainmentLeonardo Ra aelliVollst andiger Abdruck der von der Fakult at fur Maschinenwesen der Tech-nischen Universit at Munc hen zur Erlangung des akademischen Grades einesDoktor-Ingenieurs (Dr.-Ing.)genehmigten Dissertation.Vorsitzender: Univ.- Prof. Dr. mont. habil. Ewald WernerPrufer der Dissertation:1. Univ.- Prof. Dr.-Ing. Horst Baier2. Hon.-Prof. Dr.-Ing., Dr. Eng.(Japan) Hans-Harald BoltDie Dissertation wurde am 12.01.2006 bei der Technischen Universit at Munc heneingereicht und durch die Fakult at fur Maschinenwesen am 23.05.2006 angenom-men.CONTENTS iiiContents1 Introduction and overview 12 State of the art - literature review 42.1 Composite cryogenic tank examples and testing . . . . . . . . 42.2 Permeability of bre reinforced epoxies . . . . . . . . . . . . . 62.3 Microcracks and failure criteria . . . . . . . . . . . . . . . . . 73 Discussion of tank requirements 123.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.2 Thermomechanicalts . . . . . . . . . . . . . . . . . 133.3 Permeability requirements . . . . . . . . . . . . . . . . . . . . 163.3.1 Leak rate . . . . . . . . . . . . . . . . . . . . . . . . . 163.3.2 Leak rate requirements . . . . . . . . . . . . . . . . . . 173.4 Functional requirements . . . . . . . . . . . . . . . . . . . . . 194 Tank shape and basic concept 214.1 Tank shape . . . . . . . . .

Informations

Publié par
Publié le 01 janvier 2006
Nombre de lectures 16
Langue English
Poids de l'ouvrage 3 Mo

Extrait

Lehrstuhl fur Leichtbau
Thermomechanics of Fibre Reinforced Epoxies for
Cryogenic Pressurized Containment
Leonardo Ra aelli
Vollst andiger Abdruck der von der Fakult at fur Maschinenwesen der Tech-
nischen Universit at Munc hen zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)
genehmigten Dissertation.
Vorsitzender: Univ.- Prof. Dr. mont. habil. Ewald Werner
Prufer der Dissertation:
1. Univ.- Prof. Dr.-Ing. Horst Baier
2. Hon.-Prof. Dr.-Ing., Dr. Eng.(Japan) Hans-Harald Bolt
Die Dissertation wurde am 12.01.2006 bei der Technischen Universit at Munc hen
eingereicht und durch die Fakult at fur Maschinenwesen am 23.05.2006 angenom-
men.CONTENTS iii
Contents
1 Introduction and overview 1
2 State of the art - literature review 4
2.1 Composite cryogenic tank examples and testing . . . . . . . . 4
2.2 Permeability of bre reinforced epoxies . . . . . . . . . . . . . 6
2.3 Microcracks and failure criteria . . . . . . . . . . . . . . . . . 7
3 Discussion of tank requirements 12
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Thermomechanicalts . . . . . . . . . . . . . . . . . 13
3.3 Permeability requirements . . . . . . . . . . . . . . . . . . . . 16
3.3.1 Leak rate . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 Leak rate requirements . . . . . . . . . . . . . . . . . . 17
3.4 Functional requirements . . . . . . . . . . . . . . . . . . . . . 19
4 Tank shape and basic concept 21
4.1 Tank shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Tank basic concepts . . . . . . . . . . . . . . . . . . . . . . . . 21
5 Tank base materials 23
5.1 Fibre reinforced materials . . . . . . . . . . . . . . . . . . . . 23
5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.2 Material properties . . . . . . . . . . . . . . . . . . . . 24
5.1.3 Thermal stresses in composite materials . . . . . . . . 25
5.2 Adhesive materials . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.2 Test program and specimen geometry . . . . . . . . . . 28
5.2.3 Cryogenic test setup . . . . . . . . . . . . . . . . . . . 31
5.2.4 Test results: pure adhesive . . . . . . . . . . . . . . . . 32
5.2.5 Test bonded joints strength . . . . . . . . . . . 33
5.2.6 Adhesive shear stress-strain relation . . . . . . . . . . . 38
5.2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Liner materials . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.2 Liner concepts . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.3 Materials for liners . . . . . . . . . . . . . . . . . . . . 44
5.4 Discussion and selection criteria . . . . . . . . . . . . . . . . . 45
5.4.1 Composite materials . . . . . . . . . . . . . . . . . . . 45
5.4.2 Liner selection criteria . . . . . . . . . . . . . . . . . . 47CONTENTS iv
6 Measurement of composites strength 50
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2 Test laminates . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3 Test program and procedure . . . . . . . . . . . . . . . . . . . 53
6.4 Experimentally measured crack onset strains . . . . . . . . . . 54
6.4.1 Constraining e ect . . . . . . . . . . . . . . . . . . . . 55
6.4.2 E ect of lamination angle . . . . . . . . . . . . . . . . 56
6.4.3 E ect of sti ness of the constraining ply . . . . . . . . 56
6.4.4 E ect of thickness of the constrained ply . . . . . . . . 57
6.4.5 E ect of test temperature . . . . . . . . . . . . . . . . 58
7 Measurement of composites permeability 59
7.1 Cryogenic permeability test setup . . . . . . . . . . . . . . . . 59
7.1.1 Purpose of test facility and program . . . . . . . . . . 59
7.1.2 State of the art in permeability testing . . . . . . . . . 59
7.1.3 Test setup concepts evaluation . . . . . . . . . . . . . . 61
7.1.4 Test setup schematics and general description . . . . . 62
7.1.5 Gas feed and dosage system . . . . . . . . . . . . . . . 63
7.1.6 Cryogenic chamber and specimen tting . . . . . . . . 65
7.1.7 Specimen to steel ring - joint . . . . . . . . . . . . . . . 66
7.1.8 Permeability test specimen . . . . . . . . . . . . . . . . 67
7.1.9 Test setup quali cation . . . . . . . . . . . . . . . . . . 71
7.2 Permeation tests result and discussion . . . . . . . . . . . . . 74
7.2.1 Leakage - gas pressure relation . . . . . . . . . . . . . . 74
7.2.2 Leakage - Thermal cycles relation . . . . . . . . . . . . 77
7.2.3 Leakage - Time relation . . . . . . . . . . . . . . . . . 79
7.2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 80
8 Failure models and analysis - test correlation 82
8.1 Failure criteria for laminate analysis . . . . . . . . . . . . . . . 82
8.1.1 Maximum strain criterion . . . . . . . . . . . . . . . . 84
8.1.2 Fracture mechanics criteria . . . . . . . . . . . . . . . . 84
8.1.3 Strain invariants criterion . . . . . . . . . . . . . . . . 85
8.2 Analysis test correlation . . . . . . . . . . . . . . . . . . . . . 87
8.2.1 Quadratic and physical based criteria . . . . . . . . . . 87
8.2.2 Shear Lag criterion . . . . . . . . . . . . . . . . . . . . 88
8.2.3 Strain invariants criterion . . . . . . . . . . . . . . . . 89
8.3 Numerical simulation of adhesively bonded joints . . . . . . . 92
8.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 92
8.3.2 Material models . . . . . . . . . . . . . . . . . . . . . . 93
8.3.3 models for metals . . . . . . . . . . . . . . . . 95CONTENTS v
8.3.4 Von Mises, Tresca and Hill’s Yield criteria . . . . . . . 97
8.3.5 Yield criteria for polymers . . . . . . . . . . . . . . . . 98
8.4 Test simulation and discussion . . . . . . . . . . . . . . . . . . 99
8.4.1 FE Model . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.4.2 Simulation results and comparison to the experiment . 100
8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
9 Laminate analysis 103
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.2 Modelling thermomechanical loads . . . . . . . . . . . . . . . 103
9.3 Load scaling factor . . . . . . . . . . . . . . . . . . . . . . . . 105
9.4 Numerical Design of laminates for cryogenic tanks . . . . . . . 105
9.4.1 Discrete gradient materials . . . . . . . . . . . . . . . . 108
9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
10 Summary and outlook 113LIST OF FIGURES vi
List of Figures
1 Ariane second stage (left) and "Phoenix" test vehicle, precur-
sor of the european next generation launcher . . . . . . . . . . 2
2 Molecules owing through the tank wall are collected in a
reference volume,V . The slope with which pressure increases1
in the collection volume is a measure of the leak rate . . . . . 16
3 DLR automotive at cylinder tank scheme . . . . . . . . . . . 17
4 Approximate geometric data for the inner tank wall, inter wall
volume and admissible pressure rise . . . . . . . . . . . . . . . 17
5 Single walled tank concept for Commercial aeroplane(from [57]) 22
6 Automotive double walled tank concept (from [56]) . . . . . . 22
7 Sandwich tank section . . . . . . . . . . . . . . . . . . . . . . 22
8 Onset of thermal stresses due to material orthotropy in CFRP
laminates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
9 Example of a typical microcrack in CFRP angle ply laminates 26
10 Single and double lap shear specimens geometries . . . . . . . 31
11 Cryogenic tensile test facilities for tests at liquid nitrogen (left)
and liquid helium (right) temperatures . . . . . . . . . . . . . 31
12 Tensile stress/strain relation for the two tested adhesives at
several test temperatures . . . . . . . . . . . . . . . . . . . . . 33
13 Shear strength function of test temperature and overlapping
length for EA9361 bonded joints . . . . . . . . . . . . . . . . . 34
14 Shear strength function of test temperature and overlapping
length for EA9321 bonded joints . . . . . . . . . . . . . . . . . 35
15 Failure surface for 12,5 mm OL at several temperatures (left)
and at 77 Kelvin for several overlapping lengths (right) . . . . 36
16 Symmetric failure surface is typical when primer fails . . . . . 37
17 Failure surface of the DLS specimens. Failure is mainly asym-
metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
18 Comparison between experimental and simulated shear stress-
strain curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
19 Position of the extensometer for shear module measurements
(left) and displacements in the FE simulation (right) . . . . . 40
20 Leak path due to cracks in a Cross ply laminate . . . . . . . . 42
21 Two type of liner concepts . . . . . . . . . . . . . . . . . . . . 43
22 Completely free and partially attached membrane liner concepts 44
23 FE model and schematic representation of the laminate layup 47
24 FE analysis results. Liner equivalent stain ratio (left) and
stress (right) as function of laminate mechanical strain . . . . 48LIST OF FIGURES vii
25 Constraining e ect in symmetric cross ply laminates (from
o[50] and [51]). Dependence on 90 ply thickness (left) and on
sti ness ratio between constraining an

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents