Toroidal orbifolds [Elektronische Ressource] : resolutions, orientifolds and applications in string phenomenology / vorgelegt von Susanne Reffert
249 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Toroidal orbifolds [Elektronische Ressource] : resolutions, orientifolds and applications in string phenomenology / vorgelegt von Susanne Reffert

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
249 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

TOROIDAL ORBIFOLDS:RESOLUTIONS, ORIENTIFOLDSAND APPLICATIONS IN STRINGPHENOMENOLOGYDissertationan der Fakult¨at fur¨ Physik derLudwig-Maximilians-Universita¨tMunc¨ henvorgelegt vonSUSANNE REFFERTaus Zur¨ ichMunc¨ hen, Mai 2006ii1. Gutachter: Prof. Dr. Dieter Lust,¨ LMU Munc¨ hen2.hter: Prof. Dr. Wolfgang Lerche, CERNTag der mundlic¨ hen Prufung:¨ 21.7.2006iiiTo my parentsivvSummaryAs of now, stringtheoryis the best candidatefor atheory of quantum gravity. Sinceitis anomaly–free only in ten space-time dimensions, the six surplus spatial dimensionsmust be compactified.This thesis is concerned with the geometry of toroidal orbifolds and their applica-tions in string theory. An orbifold is the quotient of a smooth manifold by a discrete6group. In the present thesis, we restrict ourselves to orbifolds of the form T /Z orN6T /Z ×Z . These so–called toroidal orbifolds are particularly popular as compacti-N Mfication manifolds in string theory. They present a good compromise between a trivial6compactificationmanifold,suchastheT andonewhichissocomplicatedthatexplicitcalculationsarenearlyimpossible,whichunfortunatelyisthecaseformanyifnotmostCalabi–Yau manifolds. At the fixed points of the discrete group which is divided out,the orbifold develops quotient singularities. By resolving these singularities via blow–ups, one arrives at a smooth Calabi–Yau manifold. The systematic method to do so isexplained in detail.

Sujets

Informations

Publié par
Publié le 01 janvier 2006
Nombre de lectures 9
Langue English
Poids de l'ouvrage 1 Mo

Extrait

TOROIDAL ORBIFOLDS:
RESOLUTIONS, ORIENTIFOLDS
AND APPLICATIONS IN STRING
PHENOMENOLOGY
Dissertation
an der Fakult¨at fur¨ Physik der
Ludwig-Maximilians-Universita¨t
Munc¨ hen
vorgelegt von
SUSANNE REFFERT
aus Zur¨ ich
Munc¨ hen, Mai 2006ii
1. Gutachter: Prof. Dr. Dieter Lust,¨ LMU Munc¨ hen
2.hter: Prof. Dr. Wolfgang Lerche, CERN
Tag der mundlic¨ hen Prufung:¨ 21.7.2006iii
To my parentsivv
Summary
As of now, stringtheoryis the best candidatefor atheory of quantum gravity. Sinceit
is anomaly–free only in ten space-time dimensions, the six surplus spatial dimensions
must be compactified.
This thesis is concerned with the geometry of toroidal orbifolds and their applica-
tions in string theory. An orbifold is the quotient of a smooth manifold by a discrete
6group. In the present thesis, we restrict ourselves to orbifolds of the form T /Z orN
6T /Z ×Z . These so–called toroidal orbifolds are particularly popular as compacti-N M
fication manifolds in string theory. They present a good compromise between a trivial
6compactificationmanifold,suchastheT andonewhichissocomplicatedthatexplicit
calculationsarenearlyimpossible,whichunfortunatelyisthecaseformanyifnotmost
Calabi–Yau manifolds. At the fixed points of the discrete group which is divided out,
the orbifold develops quotient singularities. By resolving these singularities via blow–
ups, one arrives at a smooth Calabi–Yau manifold. The systematic method to do so is
explained in detail. Also the transition to the Orientifold quotient is explained.
Instringtheory,toroidalorbifoldsarepopularbecausetheycombinetheadvantages
ofcalculabilityandofincorporatingmanyfeaturesofthestandardmodel, suchasnon-
Abelian gauge groups, chiral fermions and family repetition.
Inthesecondpartofthisthesis,applicationsinstringphenomenologyarediscussed.
The applications belong to the framework of compactifications with fluxes in type
IIB string theory. Flux compactifications on the one hand provide a mechanism for
supersymmetry breaking. One the other hand, they generically stabilize at least part
of the geometric moduli. The geometric moduli, i.e. the deformation parameters of
the compactification manifold correspond to massless scalar fields in the low energy
effectivetheory. Sincesuchmasslessfieldsareinconflictwithexperiment, mechanisms
which generate a potential for them and like this fix the moduli to specific values
mustbeinvestigated. Aftersome preliminaries, twomainexamples arediscussed. The
first belongs to the category of model building, where concrete models with realistic
6properties are investigated. A brane model compactified on T /Z ×Z is discussed.2 2
The flux-induced soft supersymmetry breaking parameters are worked out explicitly.
The second example belongs to the subject of moduli stabilization along the lines of
the proposal of Kachru, Kallosh, Linde and Trivedi (KKLT). Here, in addition to the
background fluxes, non-perturbative effects serve to stabilize all moduli. In a second
step, a meta-stable vacuum with a small positive cosmological constant is achieved.
Orientifold models which result from resolutions of toroidal orbifolds are discussed as
possible candidate models for an explicit realization of the KKLT proposal.
The appendix collects the technical details for all commonly used toroidal orbifolds
and constitutes a reference book for these models.vivii
Acknowledgments
It is a pleasure to express my profound gratitude and appreciation to my thesis
advisor Dieter Lus¨ t: For his continued support and encouragement, for letting me be
a part of his wonderful work group, and especially for sharing his ideas and views of
physics.
I am deeply indebted to Stephan Stieberger, for countless hours of explanations, as
well as his friendship and support.
I am happy to extend my special thanks to Emanuel Scheidegger, who has taught
me my first steps in algebraic geometry and much, much more.
I would like to thank all those I had the pleasure to collaborate with: Dieter
Lust,¨ Peter Mayr, Emanuel Scheidegger, Waldemar Schulgin, Stephan Stieberger and
Prasanta Tripathy. Furthermore, I would like to thank everyone who was or is part
of the String Theory group at Humboldt University in Berlin and later in Munich,
for contributing to the hospitable and lively atmosphere of the group I have enjoyed
and have greatly benefitted from. In particular, I would like to thank two of my
formerofficemates: George Kraniotis forsharinghis greatenthusiasm forphysics, and
Domenico Orlando, for pleasant company and lively discussions.
Finally, I would like to thank everyone who has taken the trouble to teach me or
to share their insights, if only once and just for ten minutes. Sometimes small things
make a big difference.
Outsideofphysics, IwouldliketothankmyfamilyandBernhardfortheirsupport,
and my landlords for taking care of the animals when I was traveling.viiiContents
1 Introduction and Overview 1
I The Geometry of Toroidal Orbifolds 7
2 At the orbifold point 9
2.1 What is an orbifold? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Why should I care? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Point groups and Coxeter elements . . . . . . . . . . . . . . . . . . . . 10
22.3.1 Example A:Z on G ×SU(3) . . . . . . . . . . . . . . . . . 126−I 2
2.4 The usual suspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Shape and size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 The metric and its deformations . . . . . . . . . . . . . . . . . . . . . . 15
6 22.6.1 Example A: T /Z on G ×SU(3) . . . . . . . . . . . . . . . 166−I 2
2.7 Parametrizing the geometrical moduli . . . . . . . . . . . . . . . . . . . 16
6 22.7.1 Example A: T /Z on G ×SU(3) . . . . . . . . . . . . . . . 176−I 2
2.8 Fixed tori with non-standard volumes . . . . . . . . . . . . . . . . . . . 18
62.8.1 Example B: T /Z on SU(2)×SU(6) . . . . . . . . . . . . . 196−II
2.9 Fixed set configurations and conjugacy classes . . . . . . . . . . . . . . 21
6 22.9.1 Example A: T /Z on G ×SU(3) . . . . . . . . . . . . . . . 226−I 2
2.10 There’s more than meets the eye . . . . . . . . . . . . . . . . . . . . . 23
3 The smooth Calabi-Yau 25
3.1 From singular to smooth . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 A lattice and a fan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
33.2.1 Example A.1: C /Z . . . . . . . . . . . . . . . . . . . . . . . 276−I
3.3 Resolving the singularities . . . . . . . . . . . . . . . . . . . . . . . . . 27
33.3.1 Example A.1: C /Z . . . . . . . . . . . . . . . . . . . . . . . 296−I
3.4 Mori cone and intersection numbers . . . . . . . . . . . . . . . . . . . . 30
33.4.1 Example A.1: C /Z . . . . . . . . . . . . . . . . . . . . . . . 326−I
3.5 Divisor topologies, Part I . . . . . . . . . . . . . . . . . . . . . . . . . . 33
33.5.1 Example A.1: C /Z . . . . . . . . . . . . . . . . . . . . . . . 346−I
33.5.2 Ex B.1: C /Z . . . . . . . . . . . . . . . . . . . . . . 356−II
3.6 The big picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
ixx Contents
23.6.1 Example A:Z on G ×SU(3) . . . . . . . . . . . . . . . . . 376−I 2
63.6.2 Example C: T /Z ×Z . . . . . . . . . . . . . . . . . . . . . . 376 6
3.7 The inherited divisors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6 23.7.1 Example A: T /Z on G ×SU(3) . . . . . . . . . . . . . . . 436−I 2
3.8 The intersection ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6 23.8.1 Example A: T /Z on G ×SU(3) . . . . . . . . . . . . . . . 476−I 2
3.9 Divisor topologies, Part II . . . . . . . . . . . . . . . . . . . . . . . . . 49
6 23.9.1 Example A: T /Z on G ×SU(3) . . . . . . . . . . . . . . . 526−I 2
63.9.2 Example B: T /Z on SU(2)×SU(6) . . . . . . . . . . . . . 536−II
3.10 The twisted complex structure moduli . . . . . . . . . . . . . . . . . . 55
4 From Calabi–Yau to Orientifold 57
4.1 Yet another quotient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
(1,1)
4.2 When the patches are not invariant: h = 0 . . . . . . . . . . . . . . 58−
64.2.1 Example B: T /Z on SU(2)×SU(6) . . . . . . . . . . . . . 596−II
4.3 The local orientifold involution . . . . . . . . . . . . . . . . . . . . . . 59
64.3.1 Example B: T /Z on SU(2)×SU(6) . . . . . . . . . . . . . 616−II
4.4 The intersection ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
64.4.1 Example B: T /Z on SU(2)×SU(6) . . . . . . . . . . . . . 636−II
4.5 Global O–plane configuration and tadpole cancellation . . . . . . . . . 65
64.5.1 Example B: T /Z on SU(2)×SU(6) . . . . . . . . . . . . . 666−II
II Applications in String Phenomenology 69
5 Preliminaries 71
5.1 The type IIB low energy effective action . . . . . . . . . . . . . . . . . 71
5.2 The K¨ahler potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
65.2.1 Example D: T /Z ×Z . . . . . . . . . . . . . . . . . . . . . . 732 2
5.3 The orientifold action . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 Turning on background flux . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5 Invariant 3-forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
65.5.1 Example D: T /Z

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents