Towards single atom aided probing of an ultracold quantum gas [Elektronische Ressource] / vorgelegt von Shincy John
129 pages
English

Towards single atom aided probing of an ultracold quantum gas [Elektronische Ressource] / vorgelegt von Shincy John

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
129 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Towards single atom aided probing of anultracold quantum gasDissertationzurErlangung des Doktorgrades (Dr. rer. nat.)derMathematisch-Naturwissenschaftlichen Fakult atderRheinischen Friedrich-Wilhelms-Universit at Bonnvorgelegt vonShincy JohnausKottayam (Indien)Bonn 2010Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakult atder Rheinischen Friedrich-Wilhelms-Universit at Bonn1. Gutachter: Prof. Dr. Dieter Meschede2.hter: Prof. Dr. Martin WeitzTag der Promotion: 22.02.2011Erscheinungsjahr: 2011Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonnhttp://hss.ulb.uni-bonn.de/diss online elektronisch publiziert.AbstractIn this thesis, the interactions in an unbalanced Rubidium (Rb)-Caesium (Cs) mix-ture are studied, where the Cs atoms have been used as probes to study the in-terspecies interactions. The Rb atoms are trapped and stored in a conservativepotential, in an optical dipole trap and cooled to quantum degeneracy. The coherentmanipulation of the spin states is realized using a microwave and radio frequencyradiation to prepare the Rb atoms in the various Zeeman split hyper ne levels of theground state. Cs atoms are trapped in a MOT. An overlap of these two entities isobtained via a magnetic transport to study the interspecies interactions. The dy-namics of the Cs MOT is studied in the presence of a 600 nK thermal cloud of Rb,where a loss in the Cs atoms is observed. Rb remains una ected.

Sujets

Informations

Publié par
Publié le 01 janvier 2011
Nombre de lectures 11
Langue English
Poids de l'ouvrage 4 Mo

Extrait

Towards single atom aided probing of an
ultracold quantum gas
Dissertation
zur
Erlangung des Doktorgrades (Dr. rer. nat.)
der
Mathematisch-Naturwissenschaftlichen Fakult at
der
Rheinischen Friedrich-Wilhelms-Universit at Bonn
vorgelegt von
Shincy John
aus
Kottayam (Indien)
Bonn 2010Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakult at
der Rheinischen Friedrich-Wilhelms-Universit at Bonn
1. Gutachter: Prof. Dr. Dieter Meschede
2.hter: Prof. Dr. Martin Weitz
Tag der Promotion: 22.02.2011
Erscheinungsjahr: 2011
Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn
http://hss.ulb.uni-bonn.de/diss online elektronisch publiziert.Abstract
In this thesis, the interactions in an unbalanced Rubidium (Rb)-Caesium (Cs) mix-
ture are studied, where the Cs atoms have been used as probes to study the in-
terspecies interactions. The Rb atoms are trapped and stored in a conservative
potential, in an optical dipole trap and cooled to quantum degeneracy. The coherent
manipulation of the spin states is realized using a microwave and radio frequency
radiation to prepare the Rb atoms in the various Zeeman split hyper ne levels of the
ground state. Cs atoms are trapped in a MOT. An overlap of these two entities is
obtained via a magnetic transport to study the interspecies interactions. The dy-
namics of the Cs MOT is studied in the presence of a 600 nK thermal cloud of Rb,
where a loss in the Cs atoms is observed. Rb remains una ected. Here, a method has
been demonstrated, where the interspecies inelastic two- and three-body collisions
have been investigated by monitoring the one- and two-atom loss rates in Cs. Each
term in the complicated inelastic rate equation has been determined individually
without having to solve the rate equation which can not be solved analytically. This
is therefore, a nondestructive and simple method to extract information about the
interactions and can be performed for future experiments with Cs in a conservative
species speci c potential.Contents
Introduction 1
1 Ultracold Gases and their Interactions 5
1.1 Scattering Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.1 Elastic Scattering . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Scattering Length . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Inelastic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Cold Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.2 Ultracold Collisions . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.3 Loss Rates for Rubidium and Caesium . . . . . . . . . . . . . 18
1.3 BEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.1 Non-Interacting Bose Gas in a Harmonic Potential . . . . . . 20
1.3.2 BEC in the Presence of Interactions . . . . . . . . . . . . . . . 23
2 Coherent Control of Spin Degrees of Freedom 27
2.1 Optical Bloch Equations . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2 Rabi Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3 Preparation of an Ultracold Rb Gas and a Single Atom Cs MOT 35
3.1 Vacuum Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Laser Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.1 Rb Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 Cs Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Magneto-Optical Trap . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Coil System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Towards Quantum Degeneracy . . . . . . . . . . . . . . . . . . . . . . 46
3.5.1 Evaporative Cooling . . . . . . . . . . . . . . . . . . . . . . . 46
3.5.2 Microwave Setup . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6 Imaging and Detection Techniques for Rb and Cs . . . . . . . . . . . 51
3.6.1 Absorption Imaging . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6.2 Fluorescence Detection . . . . . . . . . . . . . . . . . . . . . . 53
3.7 Optical Dipole Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4 State Preparation of the Rb BEC in the Dipole Trap 63
i4.1 Magnetic Transport of a Cold Cloud in Conjunction with the Dipole
Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1.1 Magnetic Transport without the Dipole Trap . . . . . . . . . . 65
4.1.2 Transport along with the Dipole Trap . . . . . . . . 69
4.2 BEC in thej2; 2i State of the Crossed Dipole Trap . . . . . . . . . . 70
4.3 Microwave Transition to thej1; 1i State . . . . . . . . . . . . . . . . . 73
4.3.1 Microwave Spectroscopy . . . . . . . . . . . . . . . . . . . . . 74
4.3.2 Rabi Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4 Preparation of the BEC in thej1; 0i State . . . . . . . . . . . . . . . 80
4.4.1 Transfer to thej1; 0i State through a Two Photon Microwave
Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.2 Transfer to thej1; 0i State through a RF Pulse . . . . . . . . 83
4.4.3 Lifetime Measurement of a BEC in thej1; 0i State . . . . . . . 84
5 Interaction of a Single Cs Atom in a MOT with an Ultracold Rb Cloud
in the Dipole Trap 87
5.1 Single Atom Cs MOT . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Overlap of the Rb cloud with the Cs MOT . . . . . . . . . . . . . . . 89
5.2.1 Overlap using Near Resonant Light . . . . . . . . . . . . . . . 89
5.2.2 Overlap using the Ultracold Rb Cloud . . . . . . . . . . . . . 90
5.3 Interaction of the Ultracold Rb Cloud with a Single or a Few Cs Atoms 91
5.3.1 Experimental Sequence . . . . . . . . . . . . . . . . . . . . . . 91
5.3.2 Cs Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.3 Interpretation of the Results . . . . . . . . . . . . . . . . . . . 96
5.3.4 Possible Improvements in Statistical Analysis . . . . . . . . . 100
5.4 Interaction of the Rb BEC with a Few Cs Atoms . . . . . . . . . . . 102
6 Summary and Outlook 105
6.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.1.1 Species Selective Optical Lattice for Cs . . . . . . . . . . . . . 106
6.1.2 Interspecies Feshbach Resonances . . . . . . . . . . . . . . . . 107
6.1.3 Experiments with a Rb BEC and a Single Cs Atom . . . . . . 109
Bibliography 111Introduction
Ultracold quantum gases and single neutral atoms represent the two di erent regimes
of many-body and few-body quantum physics. The pooling of these two entities
helps in the study of many interesting quantum phenomena, e.g. the decoherence
studies of a quantum degenerate gas. Also, the special properties of each of them
such as coherence in an ultracold quantum gas and spatial and particle resolution
in single neutral atoms, can be used to manipulate one by the other and to address
the challenges posed by each of them. This therefore, provides us with an amazing
integrated system.
The advent of the techniques of laser cooling [1, 2, 3] and evaporative cooling [4, 5],
along with the novel trapping techniques provided by traps like the Magneto-Optical
Trap (MOT) [6, 7] and magnetic traps [8, 9, 10] have led to the cooling of dilute
atomic gases to temperatures of a few hundred nanokelvin. This resulted in the
realization of a Bose-Einstein Condensate (BEC) [11, 12, 13, 14], a coherent state of
matter, representing a many-body quantum object. This breakthrough was followed
by an explosion of experiments in the eld of ultracold quantum gases. The use of
optical dipole traps [15, 16] provided extended exibility to the trapping of atoms
and the manipulation of atomic interactions via. magnetic elds through Feshbach
resonances [17, 18]. This turned out to be an important tool in the tuning of intra-and
inter-species interactions resulting in the formation of molecules [19, 20], molecular
BECs [21, 22] and double condensates [23]. This has also enabled the condensation
of fermionic pairs in the Bardeen-Cooper-Schrie er (BCS)-BEC crossover regime
[24, 25, 26]. These weakly interacting systems exhibit long range coherence. However,
particle and spatial resolution is challenging in these systems.
Ultracold quantum gases in optical lattices [27, 28, 29] at low temperatures undergo
a transition from the super uid to the Mott insulator state [30, 31] which represents
a strongly correlated system. In such systems, coherent transport of neutral atoms
over a de nite number of lattice sites has been realized [32]. Such systems provide
a platform for the realization of multi-particle entangled states through controlled
collisions between atoms in the neighbouring lattice sites [33, 34]. However, single
atom and single site detection is demanding in these systems. Recently, single atom
and single site detection has been realized in such a system via in situ uorescence
imaging [35, 36].
In the few-body regime, we have single neutral atoms. They are suitable candidates
for storing and transmitting quantum information. A deterministic source of single
1Introduction
neutral atoms has been demonstrated in [37, 38]. A neutral atom quantum register
with a string of neutral atoms with high spatial resolution has been realized in [39].
Such strings of atoms can also be sorted and arranged precisely [40, 41]. The spin
state

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents