Vacuum-mediated incoherent processes in coherently prepared media [Elektronische Ressource] / vorgelegt von Jörg Evers
140 pages
English

Vacuum-mediated incoherent processes in coherently prepared media [Elektronische Ressource] / vorgelegt von Jörg Evers

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
140 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Vacuum-mediatedincoherent processesincoherently prepared mediaDISSERTATIONzurErlangung des DoktorgradesderFakultat fur Mathematik und PhysikderAlbert-Ludwigs-UniversitatFreiburg im Breisgauvorgelegt vonJorg EversausCastrop-Rauxel2004The work on this thesis resulted in the following publications in reviewed journals:1. U. D. Jentschura, J. Evers, C. H. Keitel and K. Pachucki,New J. Phys. 4, 49 (2002)A problematic set of two-loop self-energy corrections2. D. Bullock, J. Evers and C. H. Keitel, Phys. Lett. A 307, 8 (2003)Modifying spontaneous emission via interferences from incoherent pump elds3. M. Macovei, J. Evers and C. H. Keitel, Phys. Rev. Lett. 91, 233601 (2003)Phase-control of collective quantum dynamics4. U. D. Jentschura, J. Evers, M. Haas and C. H. Keitel,Phys. Rev. Lett. 91, 253601 (2003)Lamb shift of laser-dressed atomic states5. J. Evers and C. H. Keitel, Phys. Rev. Lett. 92, 159303 (2004)Reply to comment on J. Evers and C. H. Keitel, Phys. Rev. Lett. 89, 163601(2002)6. J. Evers and C. H. Keitel, J. Phys. B: At. Mol. Opt. Phys. 37, 2771 (2004)Spontaneous-emission suppression via multiphoton quantum interference7. M. A. Macovei and J. Evers, Opt. Comm. 240, 379 (2004)Phase dependence of collective uorescence via interferences from incoherentpumping8. M. Macovei, J. Evers and C. H. Keitel, Europhys. Lett. 68, 391 (2004)Magnetic and thermal in uences on collective resonance uorescence9. J. Evers and C. H. Keitel, Europhys.

Sujets

Informations

Publié par
Publié le 01 janvier 2004
Nombre de lectures 35
Langue English
Poids de l'ouvrage 1 Mo

Extrait

Vacuum-mediated
incoherent processes
in
coherently prepared media
DISSERTATION
zur
Erlangung des Doktorgrades
der
Fakultat fur Mathematik und Physik
der
Albert-Ludwigs-Universitat
Freiburg im Breisgau
vorgelegt von
Jorg Evers
aus
Castrop-Rauxel
2004The work on this thesis resulted in the following publications in reviewed journals:
1. U. D. Jentschura, J. Evers, C. H. Keitel and K. Pachucki,
New J. Phys. 4, 49 (2002)
A problematic set of two-loop self-energy corrections
2. D. Bullock, J. Evers and C. H. Keitel, Phys. Lett. A 307, 8 (2003)
Modifying spontaneous emission via interferences from incoherent pump elds
3. M. Macovei, J. Evers and C. H. Keitel, Phys. Rev. Lett. 91, 233601 (2003)
Phase-control of collective quantum dynamics
4. U. D. Jentschura, J. Evers, M. Haas and C. H. Keitel,
Phys. Rev. Lett. 91, 253601 (2003)
Lamb shift of laser-dressed atomic states
5. J. Evers and C. H. Keitel, Phys. Rev. Lett. 92, 159303 (2004)
Reply to comment on J. Evers and C. H. Keitel, Phys. Rev. Lett. 89, 163601
(2002)
6. J. Evers and C. H. Keitel, J. Phys. B: At. Mol. Opt. Phys. 37, 2771 (2004)
Spontaneous-emission suppression via multiphoton quantum interference
7. M. A. Macovei and J. Evers, Opt. Comm. 240, 379 (2004)
Phase dependence of collective uorescence via interferences from incoherent
pumping
8. M. Macovei, J. Evers and C. H. Keitel, Europhys. Lett. 68, 391 (2004)
Magnetic and thermal in uences on collective resonance uorescence
9. J. Evers and C. H. Keitel, Europhys. Lett. 68, 370 (2004)
Double-EIT ground-state laser cooling without blue-sideband heating
10. U. D. Jentschura, E.-O. Le Bigot, J. Evers, P. J. Mohr and C. H. Keitel,
J. Phys. B: At. Mol. Opt. Phys. in print (2004)
Relativistic and radiative energy shifts for Rydberg states
11. U.D. Jentschura, J. Evers and C. H. Keitel, Laser Phys. in print (2004)
(contribution to the Festschrift dedicated to Prof. H. Walther on the occasion of
his 70th birthday)
Radiative corrections to multi-level Mollow-type spectra
12. J. Evers, U. D. Jentschura and C. H. Keitel, Phys. Rev. A in print (2004)
Relativistic and radiative corrections to the Mollow spectrum
13. M. Macovei, J. Evers and C. H. Keitel, submitted to Phys. Rev. A (2004)
Coherent manipulation of collective three-level systems
Dekan: Prof. Dr. J. Honerkamp
Leiter der Arbeit: PD Dr. C. H. Keitel
Referent: PD Dr. C. H. Keitel
Korreferent: Prof. Dr. A. Blumen
Tag der Verkundung des Prufungsergebnisses: 29.11.2004
iiContents
Introduction 1
I Control of spontaneous emission in coherently pre-
pared media 6
Context and basic concepts 7
1 Spontaneous-emission suppression via interference induced by
multiphoton pathways 10
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Derivation of the multiphoton Hamiltonian . . . . . . . . . . . . . . . . 11
1.2.1 Atomic transition operators . . . . . . . . . . . . . . . . . . . . . 14
1.2.1.1 Equations of motion . . . . . . . . . . . . . . . . . . . . 14
1.2.1.2 First-order transition operators . . . . . . . . . . . . . . 15
1.2.1.3 Higher-order transition operators. . . . . . . . . . . . . 16
1.2.2 E ective Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.2.1 Two-photon Hamiltonian . . . . . . . . . . . . . . . . . 17
1.2.2.2 Three-photon Hamiltonian . . . . . . . . . . . . . . . . 19
1.3 Decay dynamics of the e ective two-level system . . . . . . . . . . . . . 21
1.3.1 General considerations . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.2 Rubidium as an example . . . . . . . . . . . . . . . . . . . . . . 25
1.3.2.1 Model system . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.A First order transition operators . . . . . . . . . . . . . . . . . . . . . . . 30
2 Modifying spontaneous emission via interference induced by in-
coherent pump elds 33
3 Control of collective quantum dynamics 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 The model and the master equation . . . . . . . . . . . . . . . . . . . . 37
3.3 Steady-state solutions of the master equation . . . . . . . . . . . . . . . 41
3.3.1 Phase manipulation of collective processes . . . . . . . . . . . . 41
3.3.2 Magnetic and thermal inuences on collective processes . . . . . 46
3.4 Time evolution of the dressed-state populations . . . . . . . . . . . . . . 48
3.5 The collective resonance uorescence spectrum . . . . . . . . . . . . . . 49
3.5.1 Phase manipulation of the collective spectral features . . . . . . 50
3.5.2 Magnetic and thermal inuences on the collective spectral features 55
3.6 The collective absorption spectrum . . . . . . . . . . . . . . . . . . . . . 58
3.6.1 Phase manipulation of the collective absorption properties . . . . 58
3.6.2 Magnetic and thermal inuences on the collective absorption
processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
iiiII Laser-cooling beyond the Doppler limit 62
4 Double-EIT ground-state laser cooling 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Laser cooling with EIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 The double-EIT scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Numerical simulation of the system dynamics . . . . . . . . . . . . . . . 70
4.4.1 Monte-Carlo simulation . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.2 Direct integration of the density matrix equation . . . . . . . . . 72
4.5 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6 Discussion and summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
III Relativistic and radiative corrections to incoherent
processes 78
Context and basic concepts 79
5 Precisionanalysisoftheincoherentresonanceuorescencespec-
trum of laser-driven few-level atoms 86
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2 The Mollow spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3 Relativistic and radiative corrections . . . . . . . . . . . . . . . . . . . . 91
5.3.1 Corrections to the detuning . . . . . . . . . . . . . . . . . . . . . 92
5.3.1.1 Relativistic corrections to the resonance frequency . . . 92
5.3.1.2 Bare Lamb shift . . . . . . . . . . . . . . . . . . . . . . 93
5.3.1.3 Unied expressions for relativistic and radiative shifts . 93
5.3.1.4 Bloch–Siegert shifts . . . . . . . . . . . . . . . . . . . . 94
5.3.1.5 O –resonant radiative corrections . . . . . . . . . . . . 95
5.3.2 Corrections to the Rabi frequency . . . . . . . . . . . . . . . . . 101
5.3.2.1 Relativistic corrections to the transition dipole moment 101
5.3.2.2 Field–conguration dependent corrections . . . . . . . . 102
5.3.2.3 Higher–order corrections to the self–energy . . . . . . . 104
5.3.2.4 Leadinglogarithmicradiativecorrectionstothetran-
sition dipole moment (vertex corrections) . . . . . . . . 104
5.3.2.5 Nonlogarithmicvertexandvacuumpolarizationcor-
rections to the transition dipole moment . . . . . . . . 106
5.3.2.6 Corrections to the secular approximation . . . . . . . . 107
1 35.4 The hydrogen 1S–2P transitions (j = /2, /2) . . . . . . . . . . . . . . . 108j
5.4.1 1S1 ↔2P1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110/2 /2
5.4.2 1S1 ↔2P3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112/2 /2
1 35.5 The hydrogen 1S–3P transitions (j = /2, /2) . . . . . . . . . . . . . . . 113j
5.5.1 Corrections within the two–level approximation . . . . . . . . . . 113
5.5.1.1 Corrections to the detuning . . . . . . . . . . . . . . . . 114
5.5.1.2 Corrections to the Rabi frequency . . . . . . . . . . . . 114
5.5.2 Corrections beyond the two–level approximation . . . . . . . . . 115
5.5.3 Explicit values for the 1S–3P and 1S–3P transition . . . . 1161/2 3/2
5.6 Discussion and summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.A Dipole moments and spin . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6 Two-loop self-energy corrections and squared decay rates 121
Summary and outlook 124
ivIntroduction
The interaction of matter with light is of seminal importance to many fundamental
and more applied physical processes. The current understanding of the underlying
physics, however, does not only allow to describe or predict the optical properties of
variousmedia. Inaddition,inthepastfewdecades,dramaticsuccesshasbeenachieved
in preparing, modifying, or controlling the matter-light interaction, in some cases al-
most at will. One approach to control this interaction is to appropriately change the
mediumitself,suchasinwaveguides,photoniccrystals,ormediawithanegativeindex
of refraction. Especially in atomic and molecular physics, however, often a di erent
approach is used. There, the properties of a given medium are altered by external
inuences such as electromagnetic elds. In particular the invention of the laser has
led to many fascinating and often counter intuitive observations [1]. Few examp

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents