Cours d économétrie : méthodes et applications (Collection finance gestion management)
291 pages
Français

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Cours d'économétrie : méthodes et applications (Collection finance gestion management) , livre ebook

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
291 pages
Français
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Cet ouvrage présente de façon didactique les fondements des méthodes économétriques et leurs applications. Il est le fruit de plusieurs années d'enseignement des méthodes de prévision, de l'économétrie des séries temporelles et des cours de statistique et de probabilité. Ce livre utilise des outils statistiques et mathématiques simples et est accessible à tous ceux qui se servent de l'économétrie dans leurs études empiriques. Il constitue un ouvrage de référence pour les étudiants et les chercheurs qui s'intéressent aux applications des méthodes économétriques les plus récentes dans les études des séries macroéconomiques et financières.
Éléments de la régression économétrique. Les modèles de régression. Méthodes d'estimation. Hétéroscédasticité et autocorrélation. Introduction aux données de panel. Représentation des séries temporelles. Les modèles de Box-Jenkins. Méthodes de prévision des séries temporelles. Estimation des modèles ARMA. La volatilité des séries temporelles. Les séries temporelles non stationnaires. Estimation des relations de cointégration. Annexe. Le processus de Wiener. Exercices d'application. Corrigés de quelques exercices. Bibliographie. Index.

Sujets

Informations

Publié par
Date de parution 20 mars 2007
Nombre de lectures 1 045
EAN13 9782746242876
Langue Français
Poids de l'ouvrage 1 Mo

Informations légales : prix de location à la page 0,0435€. Cette information est donnée uniquement à titre indicatif conformément à la législation en vigueur.

Extrait
























Cours d'économétrie





© LAVOISIER, 2007
LAVOISIER
11, rue Lavoisier
75008 Paris

www.hermes-science.com
www.lavoisier.fr

ISBN 978-2-7462-1638-9


Le Code de la propriété intellectuelle n'autorisant, aux termes de l'article L. 122-5, d'une part,
que les "copies ou reproductions strictement réservées à l'usage privé du copiste et non
destinées à une utilisation collective" et, d'autre part, que les analyses et les courtes citations
dans un but d'exemple et d'illustration, "toute représentation ou reproduction intégrale, ou
partielle, faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause, est
illicite" (article L. 122-4). Cette représentation ou reproduction, par quelque procédé que ce
soit, constituerait donc une contrefaçon sanctionnée par les articles L. 335-2 et suivants du
Code de la propriété intellectuelle.
Tous les noms de sociétés ou de produits cités dans cet ouvrage sont utilisés à des fins
d’identification et sont des marques de leurs détenteurs respectifs.


Printed and bound in England by Antony Rowe Ltd, Chippenham, March 2007.






























Cours
d'économétrie

méthodes et applications









Sami Khedhiri





Collection Finance – Gestion – Management

dirigée par JEAN-MARIEDOUBLET




La liste des titres de chaque collection se trouve en fin d’ouvrage.

TABLE DES MATIÈRES

Préface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

Chapitre 1. Eléments de la régression économétrique13. . . . . . . . . .
1.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
1.1.1. Coefficient de corrélation .. . . . . . . . . . . . . . . . . . . . .13
1.1.2. Approche probabiliste des modèles à de variables. . . . .14
1.2. Régression linéaire à deux variables. . . . . . . . . . . . . . . . . .16
1.2.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
1.2.2. Estimations et estimateurs. . . . . . . . . . . . . . . . . . . . .17
1.2.3. Estimation par la méthode des moindres carrés. . . . . . . .18
1.2.4. Exemple numérique. . . . . . . . . . . . . . . . . . . . . . . . .19
1.3. Induction statistique.. . . . . . . . . . . . . . . . . . . . . . . . . . . .20
1.3.1. Propriétés des estimateurs MCO. . . . . . . . . . . . . . . . .20
1.3.2. Théorème de Gauss-Markov .. . . . . . . . . . . . . . . . . . .22
1.3.3. Inférence statistique. . . . . . . . . . . . . . . . . . . . . . . . .22
1.3.4. Application numérique. . . . . . . . . . . . . . . . . . . . . . .24
1.4. Analyse de la variance .. . . . . . . . . . . . . . . . . . . . . . . . . .26
1.5. Prévision.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
1.6. Quelques extensions. . . . . . . . . . . . . . . . . . . . . . . . . . . .29
1.6.1. Transformations logarithmiques des variables. . . . . . . . .29
1.6.2. Modèles autorégressifs AR (1). . . . . . . . . . . . . . . . . .30
1.6.3. La méthode du maximum de vraisemblance. . . . . . . . . .31

6 Coursd’économétrie

Chapitre 2. Les modèles de régression. . . . . . . . . . . . . . . . . . . .33
2.1. Représentation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
2.1.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
2.1.2. Représentation sous forme homogène .. . . . . . . . . . . . .36
2.1.3. Coefficient de corrélation partielle .. . . . . . . . . . . . . . .40
2.2. Induction statistique.. . . . . . . . . . . . . . . . . . . . . . . . . . . .41
2.3. Prévision.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
2.4. Tests des erreurs de spécification. . . . . . . . . . . . . . . . . . . .47
2.4.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
2.4.2. Tests de constance des paramètres. . . . . . . . . . . . . . . .49
2.4.3. Test de changement structurel .. . . . . . . . . . . . . . . . . .52
2.4.4. Spécification des variables explicatives .. . . . . . . . . . . .55

Chapitre 3. Méthodes d’estimation57. . . . . . . . . . . . . . . . . . . . . . .
3.1. Estimation par maximum de vraisemblance (MV). . . . . . . . .57
3.1.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
3.1.2. Estimation MV du modèle linéaire .. . . . . . . . . . . . . . .58
3.1.3. Test du rapport de vraisemblance, test de Wald
et test du multiplicateur de Lagrange. . . . . . . . . . . . . . . . . . .60
3.1.4. Estimation MV avec erreurs non sphériques .. . . . . . . . .62
3.2. Estimation par moindres carrés généralisés .. . . . . . . . . . . . .63
3.3. Estimation par les variables instrumentales .. . . . . . . . . . . . .64
3.4. Estimation par doubles moindres carrés. . . . . . . . . . . . . . . .67

Chapitre 4. Hétéroscédasticité et autocorrélation. . . . . . . . . . . . .69
4.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
4.2. Propriétés des estimateurs MCO avec des erreurs
hétéroscédastiques .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
4.3. Tests d’hétéroscédasticité .. . . . . . . . . . . . . . . . . . . . . . . .71
4.3.1. Test de White. . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
4.3.2. Test de Breush-Pagan. . . . . . . . . . . . . . . . . . . . . . . .72
4.3.3. Test de Goldfeld-Quandt. . . . . . . . . . . . . . . . . . . . . .73
4.3.4. Test d’égalité des variances. . . . . . . . . . . . . . . . . . . .74
4.3.5. Test d’égalité Gleisjer .. . . . . . . . . . . . . . . . . . . . . . .75
4.4. Estimation avec des erreurs hétéroscédastiques. . . . . . . . . . .75
4.4.1. Première méthode.. . . . . . . . . . . . . . . . . . . . . . . . . .75
4.4.2. Deuxième méthode .. . . . . . . . . . . . . . . . . . . . . . . . .76
4.5. Autocorrélation des erreurs .. . . . . . . . . . . . . . . . . . . . . . .79

Table des matières7

4.5.1. Formes d’autocorrelation .. . . . . . . . . . . . . . . . . . . . .79
4.5.2. MCO et erreurs corrélées .. . . . . . . . . . . . . . . . . . . . .80
4.6. Tests d’autocarrelation .. . . . . . . . . . . . . . . . . . . . . . . . . .81
4.6.1. Test de Durbin-Watson (DW) .. . . . . . . . . . . . . . . . . .81
4.6.2. Test du multiplicateur de Lagrange. . . . . . . . . . . . . . . .83
4.6.3. Le test Durbin-h. . . . . . . . . . . . . . . . . . . . . . . . . . . .83
4.7. Estimation avec erreurs autocorrélées. . . . . . . . . . . . . . . . .84
4.7.1. Procédure de Cocharne-Orcutt.. . . . . . . . . . . . . . . . . .85
4.7.2. Procédure de Hildreth-Lu .. . . . . . . . . . . . . . . . . . . . .86
4.7.3. Méthode de Durbin. . . . . . . . . . . . . . . . . . . . . . . . . .87
4.7.4. Méthode de Theil-Nagar. . . . . . . . . . . . . . . . . . . . .87
4.8. Quelques extensions. . . . . . . . . . . . . . . . . . . . . . . . . . . .88
4.8.1. Erreurs AR (p). . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
4.8.2. Test ARCH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

Chapitre 5. Introduction aux données de panel93. . . . . . . . . . . . . .
5.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
5.2. Les différents modèles .. . . . . . . . . . . . . . . . . . . . . . . . . .94
5.2.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
5.2.2. Présentation des modèles. . . . . . . . . . . . . . . . . . . . . .99

Chapitre 6. Représentation des séries temporelles103. . . . . . . . . . . . .
6.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
6.2. Propriétés des séries temporelles.. . . . . . . . . . . . . . . . . . . .105
6.2.1. La modélisation .. . . . . . . . . . . . . . . . . . . . . . . . . . .105
6.2.2. La stationnarité. . . . . . . . . . . . . . . . . . . . . . . . . . . .106
6.2.3. La fonction d'autocorrélation.. . . . . . . . . . . . . . . . . . .107
6.3. Séries temporelles intégrées et cointégrées. . . . . . . . . . . . . .110
6.3.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
6.3.2. Suppression de la tendance de la série .. . . . . . . . . . . . .115
6.3.3.

  • Accueil Accueil
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • BD BD
  • Documents Documents