Mountains
212 pages
English

Vous pourrez modifier la taille du texte de cet ouvrage

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
212 pages
English

Vous pourrez modifier la taille du texte de cet ouvrage

Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Outstanding Academic Title Choice, magazine of the Association of College Research Libraries, American Library Association.Most mountains on Earth occur within relatively well-defined, narrow belts separated by wide expanses of much lower-lying ground. Their distribution is not random but is caused by the now well-understood geological processes of plate tectonics. Some mountains mark the site of a former plate collision where one continental plate has ridden up over another, resulting in a zone of highly deformed and elevated rocks. Others are essentially volcanic in origin.The most obvious mountain belts today the Himalayas, the Alps and the Andes, for example - are situated at currently active plate boundaries. Others, such as the Caledonian mountains of the British Isles and Scandinavia, are the product of a plate collision that happened far in the geological past and have no present relationship to a plate boundary. These are much lower, with a generally gentler relief, worn down through millennia of erosion.The presently active mountain belts are arranged in three separate systems: the Alpine-Himalayan ranges, the circum-Pacific belt and the mid-ocean ridges. Much of the Alpine-Himalayan belt is relatively well known, but large parts of the circum-Pacific and ocean-ridge systems are not nearly as familiar, but contain equally impressive mountain ranges despite large parts being partly or wholly submerged.This book takes the reader along the active mountain systems explaining how plate tectonic processes have shaped them, then looks more briefly at some of the older mountain systems whose tectonic origins are more obscure. It is aimed at those with an interest in mountains and in developing an understanding of the geological processes that create them.

Sujets

Informations

Publié par
Date de parution 09 novembre 2017
Nombre de lectures 0
EAN13 9781780465791
Langue English
Poids de l'ouvrage 8 Mo

Informations légales : prix de location à la page 0,1750€. Cette information est donnée uniquement à titre indicatif conformément à la législation en vigueur.

Extrait

MOUNTAINS
The origins of the Earth’s mountain systems
Graham Park
Contents Sourced illustrations Preface and acknowledgements 1 Introduction 2 Historical views 3 Plate-tectonic framework 4 The Western Mediterranean 5 The Central Mediterranean: Alps and Apennines 6 The Carpathians, the Balkans and Turkey 7 Iran to Pakistan 8 The India-Asia collision zone 9 Southeast Asia 10 The Western Pacific rim 11 The North American Cordillera 12 Central America, the Andes and Antarctica 13 The ocean ridges 14 Older Mountain Belts Glossary References and Further Reading Index
Sourced illustrations
The following illustrations are reproduced by permission:
Shutterstock: figures 2.1 , 4.2 , 4.8 , 4.11 , 4.14 , 5.1 , 5.6 , 5.7 , 5.9 , 5.11 , 6.3 , 6.4 , 6.8 , 6.11 , 6.13 , 7.1 , 8.1 , 9.1 , 9.4 , 10.1 , 10.8 , 10.10 , 11.1 , 11.3 , 11.5 , 11.9 , 11.10 , 12.2 , 12.5 , 12.6 , 12.9 , 13.1 , 13.7 .
Science Photo Library: 7.4 , 13.17 .
Figure 2.2 : Umbgrove, J.H.F. 1950. Symphony of the Earth, Martinus Nijhoff, The Hague.
The following illustrations have been adapted from published sources:
Figure 2.3 : Du Toit, A.L. (1957) Our Wandering Continents. An Hypothesis of Continental Drifting. London: Oliver & Boyd.
Figure 2.4 : Wegener, A. (1922) Die Enstehung der Kontinente und Ozeane. Braunschweig: Friedrich Vieweg & Sohn.
Figure 2.5 : Du Toit, A.L. (1957) Our Wandering Continents. An Hypothesis of Continental Drifting. London: Oliver & Boyd.
Figure 2.6 : Holmes, A. (1929) Radioactivity and earth movements. Transactions of the Geological Society of Glasgow, 18, 559–606.
Figure 2.7 : McElhinny, N.W. (1973) Palaeomagnetism and plate tectonics. Cambridge: Cambridge University Press.
Figure 2.8 : Wyllie, P.J. (1976) The way the Earth works. New York: Wiley.
Figure 2.11 : Larson, R.L. and Pitman, W.C. (1972) Bulletin of the Geological Society of America, 83, 3645–3661.
Figure 3.1 : Chadwick, P. (1962) Mountain-building hypotheses. In: S.K. Runcorn (ed.) Continental drift. New York: Academic Press.
Figure 3.3 : Larson, R.L. and Pitman, W.C. (1972) Bulletin of the Geological Society of America, 83, 3645–3661.
Figure 3.4 : Uyeda, S. (1978) The new view of the Earth, San Francisco: Freeman.
Figure 3.5 : Isacks, B., Oliver, J. and Sykes, L.R. (1968) Seismology and the new global tectonics. Journal of Geophysical Research, 73, 18, 5855–5899.
Figure 3.6 : Dewey, J. (1972) Plate tectonics. In: Continents adrift and continents aground: readings from Scientific American. San Francisco: Freeman.
Figure 3.7 : Vine, F.J. and Hess, H.H. (1970) In: A.E. Maxwell (ed.) The Sea, v.4, New York: Wiley.
Figure 3.8C : Reston, T.J. (2007) The formation of non-volcanic rifted margins by the progressive extension of the lithosphere: the example of the West Iberian margin. From: G.D. Karner, G. Manatscheal and L.M. Pinheiro (eds) Imaging, mapping and modelling continental lithosphere extension and breakup. Geological Society, London, Special Publications, 282, 77–110.
Figure 3.9 : weebly.com/somali plate, via Wikimedia Commons.
Figure 3.10 , 3.11 : Dewey, J.F. and Bird, J. (1970) Mountain belts and the new global tectonics. Journal of Geophysical Research, 75, 2625–2647.
Figure 3.13. Searle, M.P., Elliott, J.R. et al. (2011) Crustal-lithospheric structure and continental extrusion of Tibet. Journal of the Geological Society, London, 168, 633–672.
Figure 4.3 : Sans de Galdeano, C. (2000) Evolution of Iberia during the Cenozoic with special emphasis on the formation of the Betic Cordillera and its relation with the western Mediterranean. Ciências da Terra (UNL), Lisboa 14, 9–24.
Figure 4.4 : Ziegler, P. (1990) Geological atlas of Western and Central Europe. Shell Internationale Petroleum Maatschapij BV, 239pp.
Figure 4.5 , 4.6 : Handy, M.R., Schmid, S.M., Bousquet, R., Kissling, E. and Bernoulli, D. (2010) Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps. Earth Science Reviews, 102, 121–158.
Figure 4.7 , 4.9 : (1) Puigdefàbregas, C., Muñoz, J.A. and Vergės, J. (1992) Thrusting and foreland basin evolution in the Southern Pyrenees. In: K. McClay (ed.) Thrust tectonics. London: Chapman & Hall, 247–254. (2) Vergés, J. (1993) Estudi geològic del vessant Sud del Pirineu Oriental i Central: Evolució en 3D. Ph.D. thesis, University of Barcelona.
Figure 4.10 : (1) Alonso-Chaves, F.M., Soto, J.I., Orozco, M., Kilias, A.A. and Tranos, M.D. (2004) Tectonic evolution of the Betic Cordillera: an overview. Bulletin of the Geological Society of Greece, 36, 1598–1607. (2) Castro, J.M., Garcia, A., Gómez, J.J., Goy, A., Molina, J.M., Ruiz Ortiz, P.A. and Sopeña, A. (2009) Mesozoic successions of the Betic and Iberian ranges. In: A. Garcia-Cortés, J.A. Villar, J.P. Suarez-Valgrande and C.I.S. Gonzálaez, Spanish geological frameworks and geosites, Instituto Geológico y Minerò de España, Madrid, 73–90.
Figure 4.12 : (A): (1) Azañón, J.M., Galindo-Zalvidar, J., Garcia-Dueñas, V. and Jabaloy, A. (2002) Alpine tectonics II: Betic Cordillera and Balearic Islands. In: W. Gibbons and M.T. Moreno, The geology of Spain. The Geological Society, London. (2) Morales, J., Serrano, I., Jabaloy, A. et. al. (1999) Active continental subduction beneath the Betic Cordillera and the Alboran Sea. Geology, 27, 735–538. (B) Banks, C.J. and Warburton, J. (1991) Mid-crustal detachment in the Betic system of Southeast Spain. Tectonophysics, 191, 275–289.
Figure 5.2 : Argand, E. (1916) Sur l’arc des Alpes occidentales. Eclogae Geologicae Helvetiae, 14, 145–191.
Figure 5.3 : Zeck, H.P. (1999) Alpine plate kinematics in the western Mediterranean: a westwards-directed subduction regime followed by slab roll-back and slab detachment. In: B. Durand, L. Jolivet, F. Horvath and M. Séranne (eds) The Mediterranean basins: Tertiary extension within the Alpine Orogen. Geological Society of London, Special Publications, 156, 109–120.
Figure 5.4 : (A, C): Schmid, S.M., Fügenschuh, B., Kissling, E. and Schuster, R. (2004) Tectonic map and overall architecture of the Alpine orogeny. Eclogae geologicae Helvetica, 97, 93–117; (B): Handy, M.R., Schmid, S.M., Bousquet, R., Kissling, E. and Bernoulli, D. (2010) Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological–geophysical record of spreading and subduction in the Alps. Earth Science Reviews, 102, 121–158.
Figure 5.5 : (A) Pfiffner, A. (2014) Geology of the Alps, Chichester: Wiley Blackwell. (B) Dietrich, D. and Song, H. (1984) Calcite fabrics in a natural shear environment, the Helvetic nappes of Switzerland. Journal of Structural Geology, 6, 19–32.
Figure 5.8 : Pfiffner, A. (2014) Geology of the Alps, Chichester: Wiley Blackwell.
Figure 5.10 : Patacca, E. and Scandone, P. (2007) Geology of the Southern Apennines. Bollettino del Societa Geologia Italiana, Special Issue 7, 75–119.
Figure 5.12 : Carminati, E. and Doglioni, C. (2012) Alps vs. Apennines: the paradigm of a tectonically asymmetric Earth. Earth-Science Reviews, 112, 67–96.
Figures 6.1 : Okay, A.I. (2000) Geology of Turkey: a synopsis, Anschnitt, 21, 19–42.
Figure 6.2 : Márton, E., Tischler, M., Csontos, L., Fügenschuh, B. and Schmid, S.M. (2007) The contact zone between the ALCAPA and Tisza–Dacia mega-tectonic units of Northern Romania in the light of new palaeomagnetic data. Swiss Journal of Geosciences, 100, 1–16.
Figure 6.5 , 6.6 : Tari, V. (2002) Evolution of the northern and western Dinarides: a tectonostratigraphic approach. EGU Stephan Mueller Special Publication Series 1, 223–236.
Figure 6.7 : Degnan, P.J. and Robertson, A.H.F. (2006) Synthesis of the tectonic–sedimentary evolution of the Mesozoic–Early Cenozoic Pindos Ocean: evidence from the NW Peloponnese, Greece. In: A.H.F. Robertson and D. Mountrakis (eds) (2006) Tectonic development of the Eastern Mediterranean Region. Geological Society, London, Special Publications, 260, 467–491.
Figure 6.9 : Robertson, A.F., Parlak, O, and Ustaömer, T. (2009) Mélange genesis and ophiolite emplacement related to subduction of the northern margin of the Tauride–Anatolide continent, central and western Turkey. In: D.J.J. Van Hinsbergen, M. A. Edwards and R. Govers (eds) Collision and collapse at the Africa–Arabia–Eurasia subduction zone. The Geological Society, London, Special Publications, 311 , 9–66.
Figure 6.10 : (A) Okay, A.I. (2000) Geology of Turkey: a synopsis, Anschnitt, 21, 19–42. (B) Dilek, Y. and Altunkaynak, S. (2009) Geochemical and temporal evolution of Cenozoic magmatism in western Turkey: mantle response to collision, slab break-off, and lithosphere tearing in an orogenic belt. In: D.J. Van Hinsbergen, M.A. Edwards and R. Glover (eds) Collision and collapse at the Africa–Arabia–Eurasia subduction zone. Geological Society, London, Special Publications, 311 , 213–233.
Figure 6.12 : Okay, A.I. (2000) Geology of Turkey: a synopsis, Anschnitt, 21, 19–42.
Figure 6.15 : Adamia, S., Zakariadze, G., Chkhotua, T., Sadradze, N., Tsereteli, N., Chabukiani, A. and Gventsadze, A. (2011) Geology of the Caucasus: a review. Turkish Journal of Earth Sciences, 20, 489–544.
Figure 7.2 : Paul, A., Hatzfeld, D., Kaviani, A. and Péquegnat, C. (2010) Seismic imaging of the lithospheric structure of the Zagros mountain belt, (Iran). In: P. Leturmy and C. Robin (eds) Tectonic and stratigraphic evolution of Zagros and Makran during the Mesozoic–Cenozoic. Geological Society, London, Special Publications, 330, 5–18.
Figure 7.3 : Regard, V., Hatzfield, D., Molinaro, M., Aubourg, C., Bayer, R., Bellier, O., Yamini-Fard, F., Peyret, M. and Abassi, M. (2010) The transition between Makran subduction and the Zagros collision: recent advances in its structure and active deformation. In: P. Leturmy and C. Robin (eds) Tectonic and stratigraphic evolution of Zagros and Makran during the Mesozoic–Cenozoic. Geological Society, London, Special Publications, 330, 43–64.
Figure 7.5 , 7.6 : Mc

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents