Questions variationnelles autour d'un problème de restauration d'images

icon

46

pages

icon

Français

icon

Documents scolaires

2008

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

46

pages

icon

Français

icon

Ebook

2008

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Secondaire, Lycée, Première
Universite Pierre et Marie Curie (Paris VI) Laboratoire Jacques-Louis Lions Memoire de synthese en vue d'une Habilitation a Diriger des Recherches Specialite : Mathematiques Questions variationnelles autour d'un probleme de restauration d'images Simon Masnou soutenu le 1er decembre 2008 devant le jury compose de MM. Fabrice Bethuel Universite Paris 6 Antonin Chambolle Ecole Polytechnique (Rapporteur) Albert Cohen Universite Paris 6 Gianni Dal Maso SISSA (Rapporteur) Guy David Universite Paris-Sud (President) Yves Meyer ENS Cachan Joachim Weickert Univ. des Saarlandes (Rapporteur)

  • journees agreablement studieuses

  • fac¸on fondamentale aux travaux

  • diversifiee d'outils et de modeles

  • magnifique lieu de travail et d'echange

  • source constante d'inspiration et de motivation

  • traitement de l'image

  • fruit de collaborations techniques


Voir Alternate Text

Publié par

Date de parution

01 décembre 2008

Nombre de lectures

51

Langue

Français

20Habilitationvierunivjane2010rsitaire22.3.2T.able.des.mati?res.1.A.p.erturbationtedexpansionehametho.dP7.1.0.1.I.n.tro.duction....3.1.1...........b...ork.Random.30.....lab.........3.eakly.....results...24.........267.1.0.2.P.erturbation.Expansionthe:.Outlines.of.the.Metho.d..........path.....18.maximal..8.1.0.3generalSome.denitions....23.sums.random.ti.................sc...................tro.........metho9.1.0.4.Main.resultscomp.....A.................tro...................eigh.the...........W.to.el10.1.0.5.A.w.ork2.3.4ed-out.example............Limit.Asymptotic.fo.some.endan.ariables.tro.................3.1.2........11.2.Some.limit.resultsDononsrandom.trees.13.2.1.In.tr.o.duction25.a...................I.................3.2.2.di...............3.2.3.o.urn.......813ject2.2.Distances.in.T.rees......30.tation...............I.................3...................17.W13ted2.2.1toIminimalneltro.duction................2.3.3.eigh.path.the.lab...................19.Some.questions..............13.2.2.2.D.i.gital.trees21.Some.Theorems.3.1.b.vior.r.of.w.dep.t.v.23.in.duc.on...............................2313Main2.2.3.Notation.and.metho.dolo.gy......................3.1.3.i.ussi....................15.2.2.4.D.i.stanc.es.in3.2DSToly.urns.....................................3.2.1.n.duction............15.2.2.5.T.ries............26.Em.ed.ng.d...........................27.Asymptotic.osition.f.discrete..............1622.33.2.4Binaryprotreew...............................3.3.fragmen...............................3.3.1.n.duction17.2.3.1.I.n.tro.duction....................30...3.3.2ofHomogeneous.random.fragmen.tation.pro3.4.4cess39.......................Some..31.3.3.3.Exp3.4.3onenmotia.lorksfragmen.tation.probabilit.yduction...............36................32enerating3.3.4generalizedA.pro.ject.wfutureork..............tro.................................3.4.2.examples........36.3.4.A.pattern.matc.hing.probl.e.m....37.G.function.the.Moran.del.........37.Some.w........................36.3.4.1.I4nη = (I−μF )η +ξ ,n+1 n n n+1
ξ :n
μ :
F :n
(I−μF )n
η r rn
F , μn
(X )i,n 0≤i≤n
nX
lim lim sup n cov(X ,X ) = 0;0,n r,n
N→N0 n→+∞
r=N
algorithms(fragmennitetatiofollontproendscesses,w-wMoranmatrixmoofdel.aIn).ouraPhdinthesis,,weyproevofedtheanhasticexplicittegerformstoulawithforhatheraasymptoticcenerroraluedofvcertainfolloclassesNamelyofrandomstoalgorithms,cappropriatehasticobtaintracickelopmeningmomenatraclgorithms.ofWofechaenvheprodev:elopcollabedhiawmethoedaofofanalysisstationaryofandtherealpverformancestudiedcallede"psatisfyingerturbationconditionexpansion".depMore?lypreciselyrandom,endence,givdepenbaanrecursivdeterministicetoequationaninxpltheiformdevytprobabilitthetotsrelatedkingquestionsinariousformvawithsequenceconcernedsizeis(orkiswgivhinresearcwhicOurdepctivitiesonAcesseswherehwingResearcInonorationisLouhicaSanap[5]),erturbation,eortvRepconsideredthetriangularadaptationrstep-size,yLimitrotralwiseCen,ateredgivsquareentegrablethev5randommatrix.ariablesThethe"peeharturbationwexpansion",methothedwingisofbasedeakonendencereplacingatheprandomtrees.urns,trees,conadaptivandTheoremtrolapplicationseakmatrixeofviatowandersionitsvtheoryasquarerandomPn
N N lim n cov(X ,X ) = 00 n→+∞ 0,n r,nr=N
˜(X ) S :=i,n 0≤i≤n nP Pn n˜ ˜X S := Xi,n n i,ni=1 i=1
1, 2,···n
n m n m
n m
x (U,1−U)
U [0,1]
−xn = 0 1−e x Ux (1−U)x
−xe n l
−l1−e
(U,1−U)
N(x)
d
,digitaloftrees.yWter-noeofharepresenvgeneralizationeletalsowstudiedthetheedextremalcess.waeighttedwithpathtimelengthsandinothers)randomwithbinaryUsingsearc[52],hvtreesstableconstructedhafromeacatherandom6psedistributionrmhauta-Ationpieceof2,aenconstructedendene(indepvvhadistribution.eyWin.Janson.vWtheoreme,haumvendeCyrilalsostudyingbalkeenadvingetterestedalindelsomein"Poolysizesainurns"e([3])y(AwmoindenitelydelevwhicevhsizeconsistsprobabilitofLasmardraiswingtoonepiecesballfrom,athent)addingrandothatMahmoudblaccollabkandballstaryaindenitelyndtechducedredanballs,Ralphwhereetheprovdistributionaluestheosamefwhicsuctheandertegeratdeptheendogetheronwtheecolorheighofrandomthehdrastepwnbbalplk).WWconsideredethisstudieddimensionthedistancesasytomptoticwcomppieceosition,withalmostdesurelyandandofinstudieddistribution,andforprobabilitavfamilyeoferandomitdistributionsstable.oftineryandwsmallestery.withF4]),ragmenwithtationypro([1,cessNabilrepresen,tsbrokanotherinfotcusoof(indepourtlyrethesearcusingh.newWendenecopieshathevmeectorbHosameenorationinInterested,inwiththecomplimenfolloprobabilitwingisproblem.stable.StartingawithhniqueantroobbjectSvoftesizeandtheNeiningerlargewenoughhaandeletvisawherelimithaforsequencerandomofariableindeptheendenasymptoticallybhetsanrandombvofector,pieceswherethetofisproaTuniformwithdistributedBanderierrandomevvariastartedbletheontrandomavwariablwhic.atAhineither.ancesisyfromsteMoorwhicbacistotorigin.pebiologysofailurethe.ofismoontofunctionsComplextThistimeconstructedeMoransdelsuch,withrelatedprobabilitoyopulationandande,theoryvOurapproachhbasedthatgenerating,andwAnalysis.ebreakTy =φ θ +v ; t≥ 0t t tt
{y} {v} {φ}t t≥0 t t≥0 t t≥0
{θ} dt t≥0
θ =θ +wt+1 t t+1
wt+1
ˆθt
Tˆ ˆ ˆθ =θ +μL (y −φ θ ).t+1 t t t tt
μ Lt
pursued.iseof,scalartracobtainoftthatvisalgorithmstroleenconoundsautomaticbandtocessing,cproasignalosttication,Resultsidenpapsystemcinthatareerturbationthehissuewhere-dimensionalstep-sizestohcnhasticaregressoronandethemainunknothewnhatime-v43,aryingtparame-toter.andThiskingmoedeltencompassesgettingmancesses,ythedierenparametertisapplications,theincludingacwhihannelbeinqualbization,ttimeTheredelaastyanalysisestimationtandInectributions,hoiscancellationounds[87].kingInthattheesequelinitInisaassumedhthatgoaltheeparametertvonlyariationtheobTeysose,tuseortanhnique,impasAnconsistingductionximationstronestedInm1.0.1structuredkingmethothe(1.2)(1.3)whereationexpansionreferrederturbationaspadaptationandandnoisisreferandomrredector,toctcanheelag-noise.hosenTaoumtracerkdierenthewvys.ariationsisofvtheliteratureparameter,theitofisofcustomaryypto(1.3).usemaconrecursivtheegoalalgorithmtoforbupndatingtracanerrors.estimateinAdirections1vChapitrebThisobtaineddecomp[31,enables42].computationthisexpliciterfordierenmomenapproacandisrelatedOurtities.isMostobtainofxplithesesialgorithmsexpressioncannotbbeforputtracinerror.theoformpurpandwlinearwillheatecregressionreferredmoode"pelyexpansion",linariationsapproectiv(1.3)inyaprorespwithproucaresimpler(1.1)thanobservoriginalerrorwherecess.vparticularofositionthetheparameterof(seeexpressions[31,the87]tsandotherthequanreferences7therein).T˜ ˜θ = (I−μLφ )θ +μLv −w ,t+1 t t t t t+1t
˜ ˆ ˜θ = θ −θ θt t t t+1
u v w˜ ˜ ˜ ˜θ = θ +μθ +θ ,t t t t
u T u u˜ ˜ ˜ ˜θ = (I−μLφ )θ , θ =θ =−θ ,t 0 0t+1 t t 0
v T v v˜ ˜ ˜θ = (I−μLφ )θ +Lv, θ = 0,t t tt+1 t t 0
w T w w˜ ˜ ˜θ = (I−μLφ )θ −w , θ = 0.t t+1t+1 t t 0
u˜{θ }t
v˜{θ }t
w˜{v} {θ } {w}t tt+1
v w˜ ˜θ θt
δ = (I−μF )δ +ξ, δ = 0t+1 t t t 0
tX
= Φ(t,s)ξs
s=0
{F} {ξ} (d×1)t t≥0 t t≥0
Φ(t,s)

(I−μF )(I−μF )···(I−μF ), t>s t t−1 s+1
I, t =s

0,
δ μt
TF =Lφt t t
ξ =Lv ξ =−w .t t t t t+1
¯ ¯F =E(F ) Z =F −F (I−μF )t t t t t t
¯I−μF = (I−μF )+μZ.t t t
(0) (0) (0)¯J = (I−μF )J +ξ, J = 0t tt+1 t 0
(0) (0) (0) (0)¯H = (I−μF )H +μZJ , H = 0t tt+1 t t 0
(0) (0)
δ = J +H .t t t
mea-aExpansionifaluedwethew,ectingaccounrerecuterm,randomifcanttotransienia(1.12)isFAanotherwise.oseHere,tothetdepcendancerecurrenceofseparate.sithe(1.9)upheonlag-noisetheofstep-size(1.wneousiseimplicit.yEqscess,(1.6)ector-vandy(1.7a)ema;y(1.11)bosee(1.8)rewrittenwas:(1.8)awith,(1.4)thiswhereector.isfordenitions,assothese1.0.2toneighOutlineccordingMetho(1.14)(1.1)recursivequationycthe(1.13)successivobeandestimatesmaofdecompthearegressionproco-aluedmeasuremenaccordingtvnoise,theeciensurementsisforgetnoise,thebinitiallinear,conditions.ess,(1.7)prolagNonoisedecomp(1.6)the(1.10)equationsAppliedintottheorecurrencrecursionserandomequationmatrix-v(1.8),isthemilarlywholesproequationcedurewheregoSinceesvastsfollotws.errorsDenoteciated(1.5)(1.8)asPosederturbatiodecompt-erroraccoun:tssforthethederrorsromandandas3),denedrrenceishasticinstotroeducedinhomogbeydwncan.writeWely,8and,(0)
Jt
tX
(0)
J = ψ(t,s)ξst+1
s=0

¯ ¯ ¯(I−μF )(I−μF )···(I−μF ), t>s t t s+1
ψ(t,s) = I, t =s

0,
δt
(0) (1) (n) (n)
δ =J +J +···+J +H ,t t t t t
(r) (n)
J , 0≤r≤n Ht t
(0) (0) (0)¯J = (I−μF )J +ξ ; J = 0t tt+1 t 0
(r) (r) (r−1) (r)¯J = (I−μF )J +μZJ ; J = 0, 0≤t<rt tt+1 t t t
(n) (n) (n) (n)
H = (I−μF )H +μZJ ; J = 0, 0≤t<nt tt+1 t t t
q≥ 1 X ={X } (l×1)n n≥0
δ = (δ(r)) Xr∈N
(δ,q) C ={C ,···,C }1 q
1≤m<s≤q m t ,···,t (s−m) t ,···,t t ≤···≤1 m m+1 s 1
t <t +r≤t ≤···≤tm m m+1 s
sup |Cov(X ···X ,X ···X )|≤C δ(r)t ,i t ,i t ,i t ,i s1 1 m m m+1 m+1 s s
i ,···,i1 s
X i Xn,i n
p ≥ 1 n ∈ N G = {G} (d×d)t t≥0
(δ,p(n+2))
X
p(n+2)/2−1(r +1) δ(r)<∞.
r
D (G) j ∈ {1,···,n} 0 ≤p,n
s≤t<∞
X j/2G ···G ≤D (G)(t−s) . i i p,n1 j
pn/j
s≤i <···<i ≤t1 j
prompctor-onenteofwherequationak-depwhere,nite.DenitionThetecnotiondofasingweandak-dep,endencbe,forintraoanducAssumeasis,atbyeDoukhantheandtherLess.ouhichi[28].alWelyeasak-mixingweprrst-orderoendence)c-weesseszerencvalueompcassmaaallarinnity.geandclasszerocrfsemoasdelscesseandetinexistsponstantarticularostrthatonglydprrespoac

Voir Alternate Text
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents
Alternate Text